
DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA

Who watches the watcher? Detecting hypervisor introspection from
unprivileged guests

Tomasz Tuzel*, Mark Bridgman, Joshua Zepf, Tamas K. Lengyel, K.J. Temkin
Assured Information Security, Greenwood Village, CO, USA

Keywords:
Virtualization
Hypervisors
Virtual machine monitors
Cloud computing
Wall timing
Caches
Side-channel attacks
Non-temporal instructions

a b s t r a c t

We present research on the limitations of detecting atypical activity by a hypervisor from the perspective
of a guest domain. Individual instructions which have virtual machine exiting capability were evaluated,
using wall timing and kernel thread racing as metrics. Cache-based memory access timing is performed
with the Flush þ Reload technique. Analysis of the potential methods for detecting non-temporal
memory accesses are also discussed. It is found that a guest domain can use these techniques to
reliably determine whether instructions or memory regions are being accessed in manner that deviates
from normal hypervisor behavior.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cloud computing offers many benefits to organizations of all sizes:
economies-of-scale net cost savings, elasticity provides seamless
scalability, and consolidation of InformationTechnology (IT) resources
improves service quality and security. To facilitate cloud migration,
modern hypervisors aim to minimize the differences between
executing in a virtualized environment and on bare-metal by using
hardware extensions to multiplex virtual machines (VMs) seamlessly
and with minimal performance impact. The hypervisor's position of
privilege on the system can come with a negative: a compromised
hypervisor is able to introspect and corrupt its VMs, bypassing data
protections and giving the adversary control over processing.

The ability of a cloud tenant to detect if and when a host is
behaving in an unorthodox or outright intrusive fashion can be
valuable in determining whether the platform is to be trusted. As
numerous organizations continuemigrating services to the cloud, it
is essential that software be able to determine the trustworthiness
of the environment in which it is executing as well as optimally
respond to possible threats.

In this paper, we present our findings regarding the utilization
of hardware side-channels to gain insight into computing envi-
ronments, the limitations of this technique, and the potential for
developing a framework to determine optimal responses. Using

hardware side-channel information, we have evaluated the feasi-
bility of using shared CPU resources to characterize privileged
software. Herein, we provide a body of research regarding the
limitations of environmental characterization of virtualized
platforms.

Our tool, Environmental Characterization and Response (ECR),
analyzes instructions and memory accesses on a guest system
which has been deployed on a hypervisor. ECR leverages a variety of
metrics to determine the potential presence - or lack - of intro-
spection, and serves to establish the limits of attack and limits of
detection touched upon earlier. The ECR effort developed a novel
technology capable of characterizing a cloud platform's privileged
architectural software from within an unprivileged environment,
providing the foundation for development of autonomous,
self-protecting cloud applications.

Our contributions are as follows:

� Provide an in-depth overview of the effects of virtualization on
shared hardware resources from amicro-architectural perspective

� Evaluate the efficacy of several timing techniques to supply a
robust baseline to build detection systems

� Perform extensive experiments on the capability and limitations
of detecting a variety of introspection techniques, including
hypervisor accesses to particular in-guest memory ranges,
instruction trapping and memory access tracing

* Corresponding author.
E-mail addresses: tuzelt@ainfosec.com (T. Tuzel), bridgmanm@ainfosec.com

(M. Bridgman), zepfj@ainfosec.com (J. Zepf), lengyelt@ainfosec.com (T.K. Lengyel),
k@ktemkin.com (K.J. Temkin).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

https://doi.org/10.1016/j.diin.2018.04.015
1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 26 (2018) S98eS106

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tuzelt@ainfosec.com
mailto:bridgmanm@ainfosec.com
mailto:zepfj@ainfosec.com
mailto:lengyelt@ainfosec.com
mailto:k@ktemkin.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.015&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.015
https://doi.org/10.1016/j.diin.2018.04.015


2. Related work

The topic of malicious hypervisors has been widely discussed
and has produced a significant body of work over the years. From
the outset, there have been concerns that adding layers underneath
the operating system (OS) will result in systems that may under-
mine, or outright compromise, the security and privacy of the OS
(Rutkowska, 2006; Zovi, 2006).

For the detection of such hypervisors, many techniques have
relied heavily on finding implementation-specific artifacts (Ferrie,
2007). Widely available open-source tools today showcase this
approach by detecting hardware or software artifacts exposed to the
guests by specific hypervisors (Paranoid Fish, 2018). It has also been
proposed to utilize even lower layers for detection, such as the
SystemManagement Mode (Rutkowska andWojtczuk, 2008). There
has also been research which evaluated the notion of looking for
hardware side-effects that a hypervisor would inadvertently intro-
duce to the system (Thompson; Brengel et al., 2016; Fritsch, 2008).

In today's computing environment, however, the existence of a
hypervisor is commonplace. Most of the research efforts thus far
have not made a distinction between the detection of a hypervisor
and the detection of an introspecting hypervisor. The research that
is available is focused on the evaluation of the stealth attributes of
malware analysis systems, such as Ether (Dinaburg et al., 2008) or
DRAKVUF (Lengyel et al., 2014). Research into the limitations
of these stealth approaches mainly involved looking for specific
artifacts, such as discrepancies in the behavior of timing sources as
these are being manipulated by the sandbox (P�ek et al., 2011).

3. Background

In the following section we provide a brief but in-depth back-
ground for the concepts that ECR is built upon.

3.1. Virtualization

The creation of a VM that behaves as a typical hardware-based
machine running a standard OS, but is separated from the actual
physical hardware resources of the hosting system is commonly
referred to as virtualization. This technology has lent itself to the
birth of the cloud, which offers immense cost-savings through
data-center consolidation, centralization of IT, and purchasing
power of providers, however, there are security concerns with
moving to cloud infrastructure. The most serious of these concerns
being the risk of malicious software compromising a hypervisor
and utilizing this privileged position to interfere with the operation
of VMs, or observe sensitive data in those VMs.

3.2. Hypervisors

A hypervisor is a piece of privileged, low-level software that
supervises the execution of guest VMs, and is typically responsible
for maintaining isolation between those VMs. To provide a guest
experience consistent with running on real hardware, a hypervisor
typically shares hardware resources between VMs, directly or
indirectly multiplexing access to real hardware resources. There are
two generally accepted classifications of hypervisors: type-1 and
type-2. A type-1 hypervisor is a bare-metal hypervisor, inwhich the
hypervisor runs directly on the hardware. A type-2 hypervisor is a
hosted hypervisor, in which a hypervisor runs as a process on the
base OS. In this effort, the Xen Project hypervisor, which is a type-1
hypervisor, was utilized.

Typically in the Xen architecture, the core hypervisor only
directly arbitrates access to a few critical system resources, including
the CPU and RAM. To mediate access to the remaining hardware,

Xen creates a domain known as dom0, which is empowered with
the ability to perform hardware access by mapping hardware
resources directly into that domain, creating a domain that is
uniquely privileged, but which still has significantly less privilege
than the virtual machine monitor (VMM) itself. In most use cases,
the hardware domain typically runs a standard Linux distribution,
such as Red Hat Enterprise Linux (RHEL) or Debian, which provides
the drivers used for hardware interfacing andmultiplexing software
used to route networking traffic to and from the guests.

3.3. Virtual machine exits

To provide an environment capable of executing user workloads
that include unmodified system software, hypervisor platforms
must be capable of interceding when a guest attempts to perform
operations that can impact the state of the real hardware. To enable
efficient intercession, processor virtualization technologies, such as
Intel's VT-x, provide hardware features that allow hypervisors to
assume control once a privileged operation is attempted. As such,
the hypervisor software has an opportunity to replace the relevant
operation with its own handlers, which often perform equivalent
operations to real hardware while limiting scope only to the
active VM.

In VT-x terminology, a virtual machine exit, or VM-exit, is a
point at which guest execution is paused and execution is returned
to the hypervisor, which can then opt to intercede on the guest's
behalf. To allow convenient world switches, VT-x based hypervisors
use a special-purpose region of memory known as a VM Control
Structure (VMCS), which is a data structure consisting of six logical
groups that handles hypervisor operations and state transitions
between the hypervisor and the guest.

During an exit (Ott, 2018):

1. The cause of the exit is recorded in the VM-exit information
fields.

2. The current processor state is saved in the guest-state area.
3. The model-specific registers (MSRs) are stored in the VM-exit

MSR-store area.
4. The processor state is loaded from the host-state area and

VM-exit controls.
5. The MSRs are loaded from the VM-exit MSR-load area.

Once the hypervisor completes its operations, a VM-entry will
be performed to transition control back to the guest. Since the
states are stored in main memory, the entire routine results in
significant overhead, due to generally low access rates versus a
processor cache. This is key to enabling detection of an introspec-
tive hypervisor.

3.4. Timers & timing methods

Modern x86-64 platforms contain a variety of timers and timing
methods. These include the x86 Timestamp Counter (TSC), the High
Precision Event Timer (HPET), and the Advanced Configuration and
Power Interface Power Management Timer (ACPI PMT). The first two
timers are of interest to us in this paper, and as such, will be
addressed here.

The TSC is a high precision timer on-board modern x86 systems
which is precise enough to measure individual processor clock
cycles. This precision makes it a typical timing source used for
analysis of timing-based side-channels, but it is important to note
that the TSC value is easily modified by hypervisors. Hypervisors
can easily intercede in requests for TSC values, and often do so for
legitimate purposes, such as the suspension and resumption of a
guest, or malicious reasons such as thwarting attempts at

T. Tuzel et al. / Digital Investigation 26 (2018) S98eS106 S99



Download English Version:

https://daneshyari.com/en/article/6884387

Download Persian Version:

https://daneshyari.com/article/6884387

Daneshyari.com

https://daneshyari.com/en/article/6884387
https://daneshyari.com/article/6884387
https://daneshyari.com

