Digital Investigation 26 (2018) S127—S135

Contents lists available at ScienceDirect =
DFRWS 2018

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2018 USA — Proceedings of the Eighteenth Annual DFRWS USA

Cyber Grand Challenge (CGC) monitor: A vetting system for the DARPA n
cyber grand challenge e
Michael F. Thompson * *, Timothy Vidas °

@ Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA
b Secureworks, One Concourse Parkway, Atlanta, GA 30328, USA

ABSTRACT

Keywords:

Full system simulation
Digital forensics
Proactive forensics
Introspection
Vulnerability analysis

The DARPA Cyber Grand Challenge (CGC) pit autonomous machines against one another in a battle to
discover, mitigate, and take advantage of software vulnerabilities. The competitors repeatedly formulated
and submitted binary software for execution against opponents, and to mitigate attacks mounted by
opponents. The US Government sought confidence that competitors legitimately won their rewards (a
prize pool of up to $6.75 million USD), and competitors deserved evidence that all parties operated in
accordance with the rules, which prohibited attempts to subvert the competition infrastructure. To
support those goals, we developed an analysis system to vet competitor software submissions destined
for execution on the competition infrastructure, the classic situation of running untrusted software.

In this work, we describe the design and implementation of this vetting system, as well as results
gathered in deployment of the system as part of the CGC competition. The analysis system is imple-
mented upon a high-fidelity full-system simulator requiring no modifications to the monitored operating
system. We used this system to vet software submitted during the CGC Qualifying Event, and the CGC
Final Event. The overwhelming majority of the vetting occurred in an automated fashion, with the
system automatically monitoring the full x86-based system to detection corruption of operating system
execution paths and data structures. However, the vetting system also facilitates investigation of any
execution deemed suspicious by the automated process (or indeed any analysis required to answer
queries related to the competition). An analyst may replay any software interaction using an IDA Pro
plug-in, which utilizes the IDA debugger client to execute the session in reverse.

In post-mortem analysis, we found no evidence of attempted infrastructure subversion and further
conclude that of the 20 vulnerable software services exploited in the CGC Final Event, half were exploited
in ways unintended by the service authors. Six services were exploited due to vulnerabilities accidentally
included by the authors, while an additional four were exploited via the author-intended vulnerability,
but via an unanticipated path.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proactive forensics often blurs the lines between traditional
forensics, pedantically requiring the application of a legal system,
and similar techniques that may not ever be used to a legal end. In
the digital space, such processes are increasingly common, with the
use of similar, sometimes identical tools and procedures as those
found in digital forensics, but to pursue a wide range of situations
from corporate policy violations to complex computer adminis-
tration troubleshooting. In many cases, adopting the relatively high

* Corresponding author.
E-mail addresses: mfthomps@nps.edu (M.F. Thompson), tvidas@secureworks.
com (T. Vidas).

https://doi.org/10.1016/j.diin.2018.04.016

standards demanded by legal systems early, even before demanded
by circumstance, leads to not only a smooth transition into a digital
forensics case, but in some cases the a priori action enables a case to
form that otherwise might be impossible. For instance, if no digital
artifacts were created as a result of some computer crimes, prose-
cution may be difficult, indeed in some cases the offense might
even go unnoticed. However, observation and prosecution may be
straightforward if the entity had previously put in place proper
logging, netflow collection, and/or host-based software security
agents. The level of preparation any entity might undergo varies
drastically, with some proactively collecting data that may even-
tually become evidence (Shields et al.,, 2011), others physically
installing hardware to enable future evidence collection (Carrier
and Grand, 2004), or preparing tools and procedures in effort to
achieve a state of readiness (Rowlingson, 2004).

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mfthomps@nps.edu
mailto:tvidas@secureworks.com
mailto:tvidas@secureworks.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.016&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.016
https://doi.org/10.1016/j.diin.2018.04.016

S128 M.E Thompson, T. Vidas / Digital Investigation 26 (2018) S127—S135

The US Department of Defense Advanced Research Projects
Agency (DARPA) created the Cyber Grand Challenge (CGC) to push
the boundary of technology in “autonomous cyber defense capa-
bilities that combine the speed and scale of automation with
reasoning ability exceeding those of human experts (DARPA,
2016).” The challenge was framed around vulnerabilities in binary
software. To encourage focused research, a concentrated, repre-
sentative software environment was created: the DARPA Experi-
mental Cyber Research Evaluation Environment, or simply DECREE.
Concomitant with this focused environment, and due to the
competitive nature of the challenge, many architectural and
implementation design decisions made throughout program aimed
to ensure the highest standards of integrity (Vidas et al., 2017). The
mechanics of the challenge, in particular the final portion of the
competition, was modeled heavily after attack-defend style cyber-
security Capture-the-Flag (CTF) competitions. The competition was
structured as a “brokered” environment. That is, instead of com-
petitors directly administering the hosts that required defense, or
directly leveraging offensive actions upon one another, competitors
uploaded software and minor metadata on how the software
should be used (e.g. targeting information) to competition infra-
structure services. This mediation afforded many desirable prop-
erties, among them more organizer control over the competition
operations and the ability to catalog and inspect every input into
the competition.

The CGC infrastructure development team built an analysis
system to vet competitor submissions as one piece of a broad
strategy to protect the competition integrity. The challenge orga-
nizers did not expect any of the CGC Final Event (CFE) competitors
to attempt to subvert the competition infrastructure. Even so, there
was desire for convincing evidence supporting the assertion that
competition integrity was not compromised in violation of CGC
rules (DARPA, 2016), and in the event that competition forensics
were required, the unusual environment and relative urgency for
results required investigative tools and processes to be foresight,
not afterthought.

The competition consisted principally of two events, a quali-
fying event and for those that progressed, a final event. Participa-
tion in the CGC Qualifying Event (CQE) was open to any applicant
who met a relatively open set of criteria (DARPA, 2014), and this
accessibility motivated the vetting of CQE submissions. The analysis
system, known as the CGC Monitor is built upon a full system
simulator. An early goal was to simulate the entire competition
infrastructure software execution environment and execute
competitor-provided software within the simulated system prior to
its introduction onto the actual competition infrastructure. The
simulator is instrumented to detect attempts to compromise the
operating system execution control paths or its data structures,
(e.g., credentials used to identify a process and its permissions). For
CQE, the goal of vetting all software prior to its reaching the
infrastructure was realized. For CFE, time constraints required
vetting of competitor software concurrently with execution on the
actual competition infrastructure. Even though this vetting was not
a prerequisite for introducing software into the competition, all
submitted software was vetted prior to the naming of the CFE
winners.

In addition to automated vetting of competitor-supplied soft-
ware, an analysis system was developed to facilitate investigation of
any executed competition submission. That is, an analyst can
investigate any particular execution that occurred during the
contest using a novel IDA Pro debugger client alongside an IDA-
Python plug-in (Eagle, 2008). The analysis tool was available to
further investigate sessions flagged during automated vetting, and
was utilized after CFE to better understand which flaws were suc-
cessfully exploited during the competition. The analyst tool

includes reverse execution, automated identification of successful
proofs of vulnerabilities (PoVs), and the ability to bookmark and
return execution to points of interest.

During CQE, vetted submissions included each replacement
challenge binary (RCB), and each proof of vulnerability (PoV), which
in CQE was an XML file that controls network traffic sent to
vulnerable Challenge Binaries (CBs). For CFE, every PoV was run
against the RCB and IDS rule-set pair specified by the Cyber
Reasoning System (CRS), that submitted the PoV. And every RCB
was exercised using a sample of the service polls created for that
CB. The competition infrastructure provides CBs with a repeatable
source of simulated entropy, potentially leading to divergent
execution between two sessions for the same service poll. The
entropy sources used within the competition infrastructure were
re-used in the simulated system to align code paths followed on
each system.

For the purposes of this paper the term “malicious” is defined as
attempts to subvert the competition infrastructure or scoring sys-
tem, ultimately in violation of one or more of the CGC Rules
(DARPA, 2016). The remainder of this paper first describes the
simulated architectures in section 2 and the implementation of the
CGC Monitor using the Simics full system simulation including
strategies for detecting specific malicious activity in section 3. The
analyst support functions and implementation of reverse execution
features are then described in section 4. Details from at scale ex-
periments of the CGC Monitor are provided in section 5. Experi-
mental results are presented along with a discussion of
performance in section 6. Finally, related work is described in
section 7 and concluding remarks are provided in section 8.

2. Emulated architecture

CQE scoring occurred on a set of isolated virtual machines
(VMs), each of which ran a single session, e.g., a reference PoV
thrown against a competitor-provided RCB. Each VM included the
two primary infrastructure software components: a player that
replayed XML files to simulate client network traffic, and a launcher
that spawned RCBs or CBs. CQE did not include an IDS component
(DARPA, 2016). The CGC Monitor for CQE was similarly constructed,
with individual simulated computers running the very same player
and launcher software to replay CGC sessions.

Each team in the CFE had its own defended host upon which all
of its services executed. When a team's CRS submits a RCB, that
program eventually executes on that team's defended host. Each
team also has its own PoV Thrower, which is a server that executes
the PoVs submitted by that team's competitors, specifically tar-
geting the team. Alongside the PoV thrower is a poller that sends
service polls to the team's defended host and assesses responses to
ensure the team's services are functional. All traffic that flows be-
tween a team's defended host and its PoV thrower and poller
passes through an IDS. A CRS can submit IDS filters to block or
modify traffic flowing to the services executing on a defended host.
Each team's suite of components included a negotiator with which
an executing PoV negotiates attributes of the proof of vulnerability.
These negotiated attributes include whether the PoV is Type 1
(controlled crash), or Type 2 (memory disclosure).

For CFE, the system simulated by the CGC Monitor includes
three distinct simulated computers that correspond to specific per-
team servers in the competition infrastructure: the defended host;
the IDS; and, the PoV thrower. To reduce the quantity of simulated
computers, service polls were originated on the simulated IDS
server rather than a separately simulated server. Similarly, within
the simulated system, the negotiation service runs on the IDS
rather than a distinct server. The simulated computers run the
exact operating system, (and custom hypervisor), deployed on the

Download English Version:

https://daneshyari.com/en/article/6884395

Download Persian Version:

https://daneshyari.com/article/6884395

Daneshyari.com

https://daneshyari.com/en/article/6884395
https://daneshyari.com/article/6884395
https://daneshyari.com

