
An in-depth analysis of Android malware using hybrid techniques

Abdullah Talha Kabakus a, *, Ibrahim Alper Dogru b

a Duzce University, Faculty of Engineering, Department of Computer Engineering, 81620, Duzce, Turkey
b Gazi University, Faculty of Technology, Department of Computer Engineering, 06560, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 29 September 2017
Received in revised form
26 December 2017
Accepted 10 January 2018
Available online xxx

Keywords:
Android malware
Android
Play store
Mobile security
Malware analysis

a b s t r a c t

Android malware is widespread despite the effort provided by Google in order to prevent it from the
official application market, Play Store. Two techniques namely static and dynamic analysis are commonly
used to detect malicious applications in Android ecosystem. Both of these techniques have their own
advantages and disadvantages. In this paper, we propose a novel hybrid Android malware analysis
approach namely mad4a which uses the advantages of both static and dynamic analysis techniques. The
aim of this study is revealing some unknown characteristics of Android malware through the used
various analysis techniques. As the result of static and dynamic analysis on the widely used Android
application datasets, digital investigators are informed about some underestimated characteristics of
Android malware.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

Smartphones have changed the life of people dramatically in the
last decade thanks to the provided functionalities and mobility.
Android leads the mobile operating system market by being used
on over 2 billion monthly active devices (Burke, 2017; Popper,
2017). According to a recent report by IDC1, Android dominates
the global smartphone market with being used on 85% of smart-
phones in all around the world (IDC Smartphone OS Market Share,
2017). It is expected that Android's global market share is expected
to rise to 90% in 2017 (Bosnjak, 2017). As a result of this popularity,
the official applicationmarket, Play Store, is used to install 82 billion
applications in 2016 (Burke, 2017). It is reported that Play Store is
growing at three times the rate of Apple's App Store which is the
official application market of iOS and the biggest official mobile
application market after Play Store (Lookout, 2011). As a result of
this popularity, Play Store attracts the attention of malware de-
velopers (Delac et al., 2011; Portokalidis et al., 2010;Wu et al., 2012;
Zhou et al., 2012). Android malware has grown by 580% between
September 2011 and September 2012 (Protalinski, 2012). According
to a recent report by Check Point2, the Android malware app “Judy”

may have reached as many as 36.5 million users (The Judy Malware
Possibly the largest malware campaign found on Google Play, 2017).
McAfee Labs report that there are around 2.5 million new Android
malware samples exposed yearly (McAfee Labs Threats Predictions
Report, 2016). Also, they report that total mobile malware grew 79%
in the past four quarters to 16.7 million samples (McAfee Labs
Threats Report June 2017, 2017). Despite that these reports
demonstrate how serious the threat is, the lack of security aware-
ness of Android digital investigators is reported bymany researches
(Enck et al., 2009; Kelley et al., 2012; King et al., 2011; Mylonas
et al., 2013). According to a recent report, while only 17% of par-
ticipants are interested in permissions while installing the appli-
cations, 42% of participants are even unaware of the permissions
(Felt et al., 2012). Google uses Bouncer which is a service supposed
to detect malicious applications which are available on Play Store by
scanning every available application using dynamic analysis
(Alzaylaee et al., 2017; Lockheimer, 2012). Alongside to the Bouncer,
Google has announced Google Play Protect during the event Google
I/O 2017 (Android e Google Play Protect, 2017; Cunningham, 2017).
Google Play Protect is an always-on service which is bundled with
the Play Store app. Google Play Protect scans the applications auto-
matically even after the installation to ensure the applications
remain safe in terms of security. According to the official website of
Google Play Protect, it is reported that 50 billion applications are
scanned byGoogle Play Protect daily (AndroideGoogle Play Protect,
2017). An advantage of Google Play Protect over Bouncer is that
Google Play Protect is able to scan applications which are not

* Corresponding author.
E-mail address: talhakabakus@gmail.com (A.T. Kabakus).

1 http://idc.com.
2 https://checkpoint.com.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.01.001
1742-2876/© 2018 Elsevier Ltd. All rights reserved.

Digital Investigation xxx (2018) 1e9

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-depth analysis of Android malware using hybrid techniques, Digital
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001

mailto:talhakabakus@gmail.com
http://idc.com
https://checkpoint.com
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001


installed from Play Store. To the best of our knowledge, this paper is
the first academic paper which introduces the Google Play Protect.

Android malware detection systems are generally categorized
into two: (1) Static analysis, and (2) dynamic analysis. Both of them
have own advantages and disadvantages as it is discussed in Sec-
tion 3. To combine the advantages of each analysis technique, we
propose a hybrid Android malware analysis framework namely
mad4a which stands for “Malicious Application Detector for
Android”. The main objective of this study is revealing the char-
acteristics of Android applications through the proposed frame-
work named mad4awhich combines static and dynamic analyzing
techniques in order to detect malware in Android. We investigate a
large variety of Android applications in order to make a conclusion
about the characterization and behavior of Android applications.
The rest of the paper is structured as follows: Section 2 presents the
related work. Section 3 discusses the proposed framework in detail.
Section 4 discusses the findings and the result. Finally, Section 5
concludes the paper with future directions.

Related work

The related work can be classified through the technique it uses
as follows: (1) Static analysis techniques, and (2) dynamic analysis
techniques.

Static analysis

Feizollah et al. (Feizollah et al., 2017). propose an analysis of the
effectiveness of intents for identifying malicious applications.
They report that intents are a more valuable feature than per-
missions in terms of detecting Android malware. According to
their evaluation, on an average, while an infected application
declares 1.18 intent-filters, a benign application declares 1.61
intent-filters. Their proposed approach performs analysis on the
smartphones. Due to the lack of both computation and storage
resources, and power, mad4a is intentionally designed to perform
analysis on a remote server. RiskRanker (Grace et al., 2012) is a
scalable framework which utilizes various static analysis tech-
niques such as the evaluation of program control flow graph and
bytecode signatures. Stowaway (Felt et al., 2011a) detects the
overprivilege by determining the set of API (Application Pro-
gramming Interface) calls that an application uses which are
mapped to the related permissions. They have evaluated Stow-
away using a set of 940 applications and have found that about
one-third of these applications are overprivileged. Dendroid
(Suarez-Tangil et al., 2014) uses a text mining approach in order to
analyze the code chunks in Android malware families. A high-
level representation of the Control Flow Graph (CFG) is extrac-
ted using the detected code chunks instead of focusing on the
specific sequence of instruction in the code chunks. The samples
are classified into Android malware families by adopting the
standard Vector Space Model and measuring the similarity be-
tween malware samples. Peng et al. (Peng et al., 2012). propose a
static analysis approach solely based on permissions. They discuss
the importance of effectively communicating the risk of an
application to digital investigators. Also, they propose to use
probabilistic generative model for risk scoring which they intro-
duce. Schmidt (Schmidt, 2011) proposes a static analysis approach
which uses the amount of free RAM (Random Access Memory),
user inactivity in the last 10 s, the number of running processes,
the percentage of CPU (Central Processing Unit) usage, and the
number of SMS (Short Message Service) messages sent. Nauman
et al. (Nauman et al., 2010). propose Apex, a policy enforcement
framework for Android that allows a user to selectively grant
permissions to applications as well as impose constraints on the

usage of resources. Apex enables dynamic permission revocation
which is also enabled with the release of Android 6.0 (API Level
23). Kirin (Enck et al., 2009) is a static analysis tool which evalu-
ates application's permissions to perform lightweight certifica-
tion to mitigate malware at installation time. APK Auditor
(Kabakus et al., 2015) is a permission-based Android malware
detection system which consists of three components namely (1)
a central server, (2) a signature database, and (3) the Android
client to interact with the server to scan applications for threats.
APK Auditor calculates a malware score based on the requested
permissions and then calculates the malware threshold limit
dynamically using logistic regression. Finally, APK Auditor clas-
sifies the application as malicious if the calculated application
malware score exceeds the malware threshold limit.

Dynamic analysis

Mahmood et al. (Mahmood et al., 2012). present an approach
that utilizes Robitium test automation in order to test Android
applications automatically in the cloud. The biggest limitation of
using Robotium framework is that it requires the tested applica-
tion to be signed in debug mode which is rarely used with the
production-ready applications (Bierma et al., 2014). Even though
applications which are not signed in debug mode can be resigned,
this approach prevents these resigned applications to be distrib-
uted in Play Store. Unlike that work, mad4a does not have a lim-
itation like that. AppsPlayground (Rastogi et al., 2013) is an
automated dynamic analysis tool for Android applications. Apps-
Playground uses permissions, and API calls. MADAM (a Multi-level
Anomaly Detector for Android Malware) (Dini et al., 2012) is a dy-
namic analysis tool which concurrently monitors Android at both
kernel and user levels in order to detect malware infections.
MADAM exploits machine learning techniques to distinguish be-
tween benign and malicious behaviors. The features MADAM uses
for the kernel-level analysis are system calls, running processes,
memory and CPU usage. The user-level features MADAM uses are
user-state, keystrokes, called numbers, sent or received SMS, and
Bluetooth/Wi-Fi analysis. While monitoring and analysis pro-
cesses of MADAM are performed on the local device, mad4a is
specifically designed to perform the analysis on a remote server
considering the limited resources (e.g., memory, CPU, disk space,
battery) of smartphones. Crowdroid (Burguera et al., 2011) is a
behavior-based dynamic analysis tool which monitors and ana-
lyzes system calls per application. Some dynamic analysis ap-
proaches (Buennemeyer et al., 2008; Jacoby and Davis, 2004; Kim
et al., 2008) use the power consumption as the main malware
detection feature for their analysis. Those approaches may be
useful for the attacks which target power consumption but it is
not sufficient since there are lots of different malware types
(Alzaylaee et al., 2017). mad4a uses both static and dynamic fea-
tures in order to cover as many malware types as possible.
TaintDroid (Enck et al., 2010) is a system-wide information flow
tracking tool that can simultaneously track multiple sources of
sensitive data such as variables, methods, file, and messages
throughout the program execution. According to their evaluation
of 30 random and popular applications which are selected from
Play Store, 15 applications have reported the location of users’ to a
remote advertising server. Paranoid Android (Portokalidis et al.,
2010) transfers the recorded execution trace which is recorded
on the smartphone to the cloud server over an encrypted channel.
The cloud server replays the execution trace within the emulator.
Paranoid Android uses a network proxy to connect to the Internet
in order to intercept inbound traffic. Instead of using a proxy,
mad4a accesses the network log file related to the simulated
application which is located on the device.

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e92

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-depth analysis of Android malware using hybrid techniques, Digital
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001



Download English Version:

https://daneshyari.com/en/article/6884432

Download Persian Version:

https://daneshyari.com/article/6884432

Daneshyari.com

https://daneshyari.com/en/article/6884432
https://daneshyari.com/article/6884432
https://daneshyari.com

