
Journal of Information Security and Applications 41 (2018) 75–91 

Contents lists available at ScienceDirect 

Journal of Information Security and Applications 

journal homepage: www.elsevier.com/locate/jisa 

Token based Detection and Neural Network based Reconstruction 

framework against code injection vulnerabilities 

Teresa K. George 

a , ∗, K. Poulose Jacob 

b , Rekha K. James c 

a Department of Computer Science, Cochin University of Science and Technology, India 
b Cochin University of Science and Technology, India 
c Department of Electronics, Cochin University of Science and Technology, India 

a r t i c l e i n f o 

Article history: 

Keywords: 

Code injection attack 

Neural network 

Query validation 

Reconstruction of queries 

Security vulnerability 

Web application 

a b s t r a c t 

Security vulnerabilities are frequently detected and exploited in modern web applications. Intruders ob- 

tain unrestricted access to the information stored at the back-end database server of a web application 

by exploiting security vulnerabilities. Code injection attacks top the list due to lack of effective strategies 

for detecting and blocking injection attacks. The proposed Token based Detection and Neural Network 

based Reconstruction (TbD-NNbR) framework is a unique approach to detect and block code injections 

with negligible processing overheads. This framework makes use of an efficient token mapping and vali- 

dation technique to match the statically generated legal query tokens against the parsed dynamic query 

tokens at run time. The proposed approach also has the provision to reconstruct queries from authen- 

ticated users. The prototype implementation of TbD-NNbR shows that it does not demand any source 

code modifications and incurs only a negligible computational overhead without any incidents of false 

positives or false negatives. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Security vulnerabilities are becoming a severe issue in web ap- 

plications as successful attacks lead to loss of integrity, confiden- 

tiality and make it a very sensitive subject in software security. 

Code Injection through a dynamic web page is one of the most 

dangerous threats that exploit the application layer vulnerabilities 

[1] . The existing techniques or strategies may not be enough to 

handle many of the vulnerabilities due to the unknown and of- 

ten obscure nature of vulnerability issues. Existing input validation 

techniques still require more sophistication. The attack on a given 

database violates the Confidentiality, Integrity, Availability (CIA) tri- 

angle of security. Most of the SQL injection attack prevention ap- 

proaches result in false positives, which will decrease the system 

availability for the authenticated users [2] . 

SQL injection attack is rated as one of the top 10 security vul- 

nerabilities targeting back-end databases [3] . In these attacks, an 

attacker attempts to change the syntax and semantics of legiti- 

mate SQL statements by inserting unintended keywords, symbols 

or malicious codes on the SQL statements accepted through dy- 

∗ Corresponding author. 

E-mail addresses: susanteresa12@gmail.com (T.K. George), kpj0101@gmail.com 

(K.P. Jacob), 

rekhajames@cusat.ac.in (R.K. James). 

namic web pages. By exploiting this vulnerability, an attacker can 

directly interact with the database server and gain access to the 

critical data and thus compromise security. These types of attacks 

can evade traditional intrusion detection systems and firewalls and 

can breach the security mechanism of authentication, availabil- 

ity, accountability and confidentiality of the database. Even though 

vulnerability scanners and automated tools are available for verify- 

ing SQL Injection Attack (SQLIA), a single mechanism or procedure 

cannot efficiently handle the potential sophisticated attacks. 

This paper proposes a Token based Detection and Neural Net- 

work based Reconstruction (TbD–NNbR) framework against code 

injection vulnerabilities. The proposed framework blocks all mali- 

cious entries and only the benign query can access the data from 

the back-end database server. The TbD–NNbR framework also has 

the provision to reconstruct the queries from authenticated users 

at run time, using the neural network, which increases the system 

availability and mitigates the denial of service attack [2] . A proto- 

type has been designed and implemented using a Java-based ap- 

plication program to test the performance and the effectiveness of 

the system. Various online applications provide a comprehensive 

list of legal and injected queries. The proposed model creation and 

implementation use these queries [1,5] . 

The rest of the paper is organized as follows: Section 2 deals 

with SQL injection attack categories. Section 3 handles the re- 

lated works. The proposed Token based Detection and Neural Net- 

https://doi.org/10.1016/j.jisa.2018.05.005 

2214-2126/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jisa.2018.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.05.005&domain=pdf
mailto:susanteresa12@gmail.com
mailto:kpj0101@gmail.com
mailto:rekhajames@cusat.ac.in
https://doi.org/10.1016/j.jisa.2018.05.005


76 T.K. George et al. / Journal of Information Security and Applications 41 (2018) 75–91 

work based Reconstruction (TbD–NNbR) framework are explained 

in Section 4 . The prototype implementation of TbD–NNbR is de- 

scribed in Section 5 . Section 6 discusses the evaluation of the pro- 

posed model and a conclusion is given in Section 7 . 

2. SQL injection attack categories 

SQL injection attack is one of the most dangerous types of vul- 

nerability attacks adopted by web hackers to compromise the se- 

curity features of a critical application. In most of the vulnerability 

analysis, tautology, union queries, piggybacked queries, logically- 

incorrect queries, stored procedures, inferences and alternate en- 

coding are the classifications of SQL injection attacks. A detailed 

description of SQL injection attacks along with examples are as fol- 

lows [1,2,6] . 

2.1. Tautologies 

In this attack, the hacker injects code into a conditional state- 

ment to evaluate it as true there by allowing the malicious user 

to bypass the user authentication or extract data from a database. 

For example, suppose that a malicious user inputs the SQL state- 

ment as SELECT ∗ FROM books WHERE ID = ‘1 ′ or ‘1 ′ = ‘1 ′ –AND 

password = ‘pass’; the comparison expression uses one or more re- 

lational operators to compare the operands and always generate 

true conditions. The targeted query may return all the rows in the 

books table. The possible signature for this type of SQL injection 

attack are the string terminator ’, OR, = , LIKE and SELECT. It is a 

kind of attack in which hackers try to bypass authentication and 

extract data from the database. 

2.2. Logically incorrect query/illegal queries 

This type of attack is used to gather information about the 

back-end database of a web application through error messages 

of type mismatch or logical error, while the query gets rejected. 

For example, the injected query on the given URL can be in the 

format: http://www.elearning/mct/? id_user = ‘123 ′ . The debugging 

information shown in the rejected query will reveal the database 

table information which can later be utilized to conduct further 

attacks. 

2.3. Union query 

These types of queries trick the database into returning the re- 

sults from database tables which are different from what was in- 

tended. For example, an injected query can be of the format: SE- 

LECT ∗ FROM users WHERE userid = 22 UNION SELECT item, results 

FROM reports. Here the attacker joins injected queries to a safe, le- 

gal query with a word UNION and gets details from different tables 

than the intended ones. Attackers mainly use this technique to by- 

pass the authentication and extract data. 

2.4. Piggybacked queries 

The attacker tries to inject additional queries along with the 

original queries, which are said to ‘piggyback’ onto the original 

query. Hence the database gets multiple queries for execution. For 

example, SELECT Login ID FROM users ID WHERE login ID = ‘john’ 

and password = ’’; DROP TABLE users- AND ID = 2345. After per- 

forming the first query, the database encounters the query delim- 

iters (;) and executes the second query. 

2.5. Alternate encodings 

These types of attacks use the char () function and 

ASCII /Hexadecimal encoding. For example: SELECT accounts 

FROM users WHERE login = ”” AND pin = 0; exec (char 

(0 × 73687574646j776e)). Hackers use this technique to avoid 

being identified by secure defensive coding and automated pre- 

vention mechanisms by modifying the query using the alternate 

encoding such as ASCII or hexadecimal coding practices. 

2.6. Stored procedure 

In these attacks, hackers aim to perform privilege escalation, 

denial of service and remote command execution using stored pro- 

cedures through the user interface to back-end servers. For exam- 

ple, UPDATE users SET password = ’Nicky’ WHERE id = ‘2 ′ UNION 

SHUTDOWN;–. The hackers use a shutdown command with which 

the back-end database will be shutdown. 

2.7. Inference attack 

Here, the hackers aim to identify the injectable parameters and 

extract data from databases. Blind SQL injection attack and Tim- 

ing SQL injection attack are the two categories of Inference attacks. 

For example the injected queries in the Timing SQL injection cate- 

gory can be in the following format: SELECT name, password FROM 

user WHERE id = 12; IF (LEN (SELECT TOP 1 column_name from 

testDB.information_schema.columns where table_name = ‘user’),4) 

WAITFOR DELAY ’0 0:0 0:10 ′ —in this example the hacker tries to 

work by understanding the behavior of the back-end database by 

injecting an always true statement and along with a “WAIT FOR”

keyword. 

3. Related works 

SQL injection has been an issue for many years, and several 

tools and strategies are developed to tackle this situation. Still, 

the risk rate of SQL injection is increasing exponentially in most 

of the online applications as there are fully automated injection 

tools available to talented hackers [7,8] . In a susceptible applica- 

tion, an SQL injection attack uses crooked input that changes the 

SQL query and establishes an illegal connection to the database. 

There are different classes of threats occurring through the secu- 

rity holes. Researchers Calvi and Vigan, in 2016 proposed some au- 

tomated approaches of testing the security of the web application 

against the constant attack [9] . Zhu, Jun, et al. recommend secure 

programming and interactive static analysis as one of the optimal 

choices to handle some of the major security threats occurring in a 

web application [10] . An appropriate survey should be performed 

to identify the vulnerabilities, exploitations and countermeasures 

to the injection attacks through these vulnerabilities. Researchers 

Johari and Pankaj, in 2012 conducted a detailed study on Injection 

vulnerabilities, and strategies for countermeasures [1] . Researcher 

Aleroud and Zhou in 2017 handles emerging attack types, targeted 

environments, countermeasures and zero-day attacks as per the 

priority and requirement of the applications [11] . Also, the taxon- 

omy of attacks is surveyed and analyzed [11] . Business organiza- 

tions protect their sensitive data and block all possible vulnerable 

points from exploitation. As analyzed and documented by Skrup- 

sky and Bisht et al. in 2013, the website security is improved by 

implementing appropriate web vulnerability scanners, and pene- 

tration testers [12] . In 2010, Doupe and Vigna proposed an im- 

plementation strategy to minimize the consequences on par with 

the severity of the vulnerability [13] . During security testing phase, 

documented by Lebeau and Franck et al. in 2013, the vulnerability 



Download English Version:

https://daneshyari.com/en/article/6884546

Download Persian Version:

https://daneshyari.com/article/6884546

Daneshyari.com

https://daneshyari.com/en/article/6884546
https://daneshyari.com/article/6884546
https://daneshyari.com

