
Journal of Information Security and Applications 40 (2018) 199–216

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

SQL Injection Attack classification through the feature extraction of

SQL query strings using a Gap-Weighted String Subsequence Kernel

Paul R. McWhirter, Kashif Kifayat ∗, Qi Shi, Bob Askwith

Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, UK

a r t i c l e i n f o

Article history:

Index Terms:

Intrusion detection

SQL Injection Attacks

Data mining

String Subsequence Kernel

Support vector machine

Supervised learning

a b s t r a c t

SQL Injection Attacks are one of the most common methods behind data security breaches. Previous re-

search has attempted to produce viable detection solutions in order to filter SQL Injection Attacks from

regular queries. Unfortunately it has proven to be a challenging problem with many solutions suffering

from disadvantages such as being unable to process in real time as a preventative solution, a lack of

adaptability to differing types of attack and the requirement for access to difficult-to-obtain information

about the source application. This paper presents a novel solution of classifying SQL queries purely on the

features of the initial query string. A Gap-Weighted String Subsequence Kernel algorithm is implemented

to identify subsequences of shared characters between query strings for the output of a similarity metric.

Finally a Support Vector Machine is trained on the similarity metrics between known query strings which

are then used to classify unknown test queries. By gathering all feature data from the query strings, ad-

ditional information from the source application is not required. The probabilistic nature of the learned

models allows the solution to adapt to new threats whilst in operation. The proposed solution is eval-

uated using a number of test datasets derived from the Amnesia testbed datasets. The demonstration

software achieved 97.07% accuracy for Select type queries and 92.48% accuracy for Insert type queries.

This limited success rate is due to unsanitized quotation marks within legitimate inputs confusing the

feature extraction. Using a test dataset that denies legitimate queries the use of unsanitized quotation

marks, the Select and Insert query accuracy rose.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

SQL Injection Attacks (SQLIAs) involve the crafting of user in-

puts in order to perform actions beyond the intended function of

a web application [1] . By the identification of the input fields asso-

ciated with the dynamic generation of queries ([23] ; Tajpour et al.,

2012), the adversary can probe the database data values, the layout

of the database (known as the database Schema), perform remote

procedures and escalate their privilege on the Database Manage-

ment System ([2] ; Balzarotti et al., 2008). Databases often contain

significant quantities of confidential information. As a result it can

prove to be lucrative for malicious users of web applications to cre-

ate queries to resolve data they are not authorized to view or alter.

SQL Injections are one of the most serious threats to web applica-

tions. It is ranked number one in the Open Web Application Se-

curity Project (OWASP) Top Ten Application Security Risks in 2013

[3] . This is due to as many as 98% of web applications having at

∗ Corresponding author.

E-mail addresses: P.R.McWhirter@2014.ljmu.ac.uk (P.R. McWhirter),

K.Kifayat@ljmu.ac.uk (K. Kifayat), Q.Shi@ljmu.ac.uk (Q. Shi), R.J.Askwith@ljmu.ac.uk

(B. Askwith).

least one security vulnerability resulting in an increase in SQL in-

jection attacks by ten percent [4] .

Our solution to the SQLIA problem is the implementation of

Machine Learning methods capable of detecting malicious queries

based on information from the structure of the query strings

learned from a training set of queries produced during runtime.

This structural information is extracted using a Gap Weighted

String Subsequence Kernel (GWSSK) function [5] . This function

computes the similarity of unknown query strings to preselected

training query strings. A Support Vector Machine (SVM) classifier

uses these similarity measurements to determine if the unknown

query is normal or malicious by determining a decision boundary

which maximizes the distance between the two classes [6] . Our

method is a form of black box method [2] .

This method does not require the re-engineering of SQL-

dependent web applications or the full disclosure of their source

code. This is a flaw of many previous methods [2] . There are also

some solutions that are easily circumvented by attackers construct-

ing novel attacks [19] . As our method uses a probabilistic clas-

sifier in the form of the SVM classifier, unknown queries with

query structures which deviate from the training dataset are still

likely to be determined as malicious due to the extracted simi-

https://doi.org/10.1016/j.jisa.2018.04.001

2214-2126/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jisa.2018.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.04.001&domain=pdf
mailto:P.R.McWhirter@2014.ljmu.ac.uk
mailto:K.Kifayat@ljmu.ac.uk
mailto:Q.Shi@ljmu.ac.uk
mailto:R.J.Askwith@ljmu.ac.uk
https://doi.org/10.1016/j.jisa.2018.04.001

200 P.R. McWhirter et al. / Journal of Information Security and Applications 40 (2018) 199–216

larity information. Our solution does have two clear limitations.

Our method must be placed between the web application and the

database. This introduces hardware overhead required to operate

the detection and prevention solution [20,22,24] . Additionally, the

detection algorithms are never going to have perfect detection ac-

curacy and therefore issues related to false negatives which can in-

flict database damage and false positives that can prevent normal

operation of a database must be mitigated [21] .

Our key contribution is the demonstration of the viability of the

GWSSK and SVM algorithms in the high-performance classification

of SQL query strings during real-time operation of a database ap-

plication. This is shown through classification accuracy and time

complexity experiments on a dataset of SQL queries exhibiting a

wide-range of normal and malicious features. The novel GWSSK

method in the automatic extraction of informative features of SQL

queries allows for the elimination of biases produced by manually

created features potentially improving the accuracy of the SQLIA

classification task.

The rest of this paper is structured as follows. In Section 2 ,

the descriptions of related works are presented. In Section 3 , the

framework of the proposed solution is discussed and the contribu-

tion of this paper is clarified. In Section 4 , the feature extraction at

the core of this solution is defined as the main contribution of this

research. In Section 5 , the experimental results of the demonstra-

tion software for the proposed method are evaluated. These results

are then discussed in chapter 6. The final conclusions and propos-

als of future work are provided within chapter 7.

2. Related works

Research into securing web applications from SQL Injection At-

tacks has proposed two differing approaches [2] . The first approach

involves the rewriting of application source code within the web

application and possibly, stored procedures within the database to

conduct sufficient input validation. The correct application of these

techniques can render a web application secure to injection com-

mands but it comes with a major disadvantage. Completed web

applications require redevelopment to incorporate the defensive

procedures. However, this is the best way to protect a system from

attacks if the system is currently in development and not yet com-

plete. The costs associated with the changing of software vastly in-

crease later into the development cycle.

NoTamper is a black-box testing method designed to determine

vulnerabilities in the server-side code. This allows vulnerabilities

to be patched although with a severe cost if vulnerabilities are

not detected [16] . AMNESIA is another vulnerability exploration

method that combines a static analysis of the web application code

with runtime monitoring [15] . SQLGuard was proposed as method

of analyzing query parse trees both before and after user-input in-

clusion. This allows the execution of the user-input to be explored

[9] . CANDID is another source code analysis method that retrofits

the source code with additional candidate queries. The runtime

queries can then be compared to these to determine any illegal

executions [17] .

The second approach involves the deployment of additional

software designed to screen the queries generated by a web appli-

cation before their execution on the database. These software solu-

tions utilize a wide range of techniques and are often significantly

less expensive to deploy into an active system. Unfortunately, they

often suffer from the disadvantage of not being a complete solu-

tion to the problem. Many solutions are unable to detect every

type of SQL Injection Attack leaving an avenue for attackers to ex-

ploit. They can also be prone to false positive and false negative

events where the detection algorithms identify legitimate queries

as malicious and block them or allowing malicious queries through

resulting in a security breach.

SQLProb is a proxy-based architecture to prevent SQL Injection

Attacks [7] . The solution defines a list of queries produced by a

web application. It processes all possible queries produced by the

typical operation of the web application. These queries are then

collected by the proxy software to produce a sample set of SQL

queries from the web application. The proxy filter then detects

inbound queries and intercepts them. An enhanced Needleman–

Wunsch algorithm [25] originally designed for the alignment of

string-based genetic data is used to determine the user input

within the full query string. The algorithm determines what sub-

string(s) within the query string to remove to gain the closest

comparison to the sample queries. This removed data is the input

string(s) within the query string. Upon the determination of the

user input, the query string is then used to generate a parse tree.

A depth-first-search is then conducted to identify the leaf nodes. If

a non-leaf node is discovered that has descendent leaf nodes that

are only sourced from the user input then the query string that

generated the parse tree is malicious. The malicious queries are

then rejected by the proxy software leaving only normal queries

to be relayed to the database.

A novel method using the Data-Mining of database logs was

proposed to detect SQLIAs [8] . The database log files were used to

identify queries executing on the database. This file contains in-

formation on the query string and the operations performed by

the query execution. The solution first generates a query tree [9] .

These query trees were used to generate feature vectors using fea-

ture extraction. A set of rules defined by the solution developers

transform the string and numerical data from the query tree into

a multidimensional numerical vector array. A training dataset of

these feature vectors containing samples of normal and malicious

queries was used to train a SVM to generate a decision rule for

the testing of future queries. Kernel functions were then used to

allow the solution to determine a non-linear decision rule. Newly

logged queries are transformed into query trees from their associ-

ated log, composed into feature vectors and compared by the SVM

to the decision rule obtained during the training phase. This so-

lution produced very high accuracy of 99.9% for select and insert

queries and 99.6% for stored procedures. The primary disadvantage

is that this solution can only be used for attack detection and not

prevention. This is due to the simple fact that the query logs that

the testing criteria are determined from are only produced when a

query is executed.

The combination of static and dynamic analysis techniques

were used as the basis of a preventative solution [10] . In this

approach, the source code of a web application is inspected to

identify the possible SQL queries. The queries are collected prior

to the insertion of user input creating a control query. The so-

lution then dynamically monitors for queries being generated at

runtime. These queries are then processed by an attribute removal

algorithm that removes all data from the query that is contained

within quotes as these attributes will have no basis on the syn-

tactic form of the query. This reduced query is then compared

using an XOR logic operation to the control query gathered dur-

ing the static analysis. If this operation returns a result indicat-

ing that the two queries are different, the user input must have

some form of injection input and it is discarded. This approach is

accurate and has very low time complexity as the XOR operation

is extremely light on processing. Unfortunately it requires a static

analysis which must be accomplished by either the analysis of the

web application source code or through the use of a proxy server

between the user and the web server.

A framework, using a machine learning approach, implements

an Intrusion Detection System that learns the patterns of query

strings [11] . It uses a supervised learning training dataset to pro-

duce training models. First the strings are parsed into syntactic

trees for feature extraction. Feature vectors are used to produce

Download English Version:

https://daneshyari.com/en/article/6884585

Download Persian Version:

https://daneshyari.com/article/6884585

Daneshyari.com

https://daneshyari.com/en/article/6884585
https://daneshyari.com/article/6884585
https://daneshyari.com

