
Journal of Information Security and Applications 37 (2017) 91–100

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Classification of malware families based on runtime behaviors

Abdurrahman Pekta ̧s ∗, Tankut Acarman

Galatasaray University, Computer Enginnering Department, Ciragan Cad No:36, 34349, Ortakoy, Istanbul, Turkey

a r t i c l e i n f o

Article history:

Keywords:

Behavior analysis

Dynamic analysis

Malware classification

Machine learning

a b s t r a c t

Classification of malware samples plays a crucial role in building and maintaining security. Design of

a malware classification system capable of supporting a large set of samples and adaptable to model

changes at runtime is required to identify the high number of malware variants. In this paper, file sys-

tem, network, registry activities observed during the execution traces and n-gram modeling over API-call

sequences are used to represent behavior based features of a malware. We present a methodology to

build the feature vector by using run-time behaviors by applying online machine learning algorithms for

classification of malware samples in a distributed and scalable architecture. To validate the effectiveness

and scalability, we evaluate our method on 17,900 recent malign codes such as viruses, trojans, back-

doors, worms. Our experimental results show that the presented malware classification’s training and

testing accuracy is reached at 94% and 92.5%, respectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Malicious software, or malware, is software used or created by

an attacker to execute his/her bad intentions on a computer system

without authorization and knowledge of its user. Basically, mali-

cious attacks are targeted to steal safety-critical or liability-critical

personal data or damage the compromised system. The recent de-

velopments in the field of computation system and proliferation

of system such as smart phones, tablets, Internet of Things (IoT),

cloud computing have led to an increased interest in malware de-

velopment. The majority of new malware samples can be deployed

as the variant of the previously known samples. The proliferation

of the runtime packer and obfuscation techniques easily enables

creation of behaviorally identical but statically different malware

samples [1] . According to [2] , more than 430 million new unique

pieces of malware were detected in 2015 with an increase of 36%

from the previous year, and a new zero-day vulnerability was dis-

covered at each week on average with a doubled release frequency

in comparison with the previous year.

Malware analysis can be grouped into two main categories

based on whether or not the file under scrutiny is executed during

the analysis: the associated methods can be referred as signature-

based or behavior-based. Signature-based methods rely on unique

raw byte patterns or regular expressions, known as signatures, cre-

ated to match the malicious file. For instance, static features of a

∗ Corresponding author.

E-mail addresses: apektas@yandex.com (A. Pekta ̧s), tacarman@gsu.edu.tr (T.

Acarman).

file are used to determine whether it is a benign or a malware. The

main advantage of signature-based methods is their exhaustiveness

since they trace all possible execution paths of a given file. Al-

though these methods provide good detection rate on known sam-

ples, they are vulnerable to code obfuscation techniques such as

run-time packing, metamorphism, and polymorphism that is gen-

erally used by malware authors to evade detection [3] .

Unlike signature-based methods, behavior-based approaches re-

quire execution of a given sample in a sandboxed environment

and run-time activities are monitored and logged. Dynamic anal-

ysis frameworks employ both virtualization and emulation envi-

ronments to execute a malware and to extract its behaviors [4,5] .

The behavior of an executable is extracted either by monitoring

system changes made in the OS, or tracking API calls along with

their parameters and returning values during execution. Although

monitoring system changes is necessary to analyze behavior of a

malware, this scheme does not involve monitoring some impor-

tant behaviors (i.e., searching for specific file types or file name,

enumeration of special registry keys, etc.,) adopted by advanced

malware samples, for instance anti-VM technique to thwart anal-

ysis. Besides, some research efforts have focused on extracting be-

haviors based on the state changes between clean and dirty snap-

shots [6,7] , where a clean (dirty) snapshot is a state of the machine

before (after) execution of a malware sample.

Recently, for malware detection and determination whether be-

ing benign or malicious software, researchers have applied a fixed

size n-gram and variable length n-gram that can be extracted from

the binary content of the analysis file and opcodes obtained after

dissembling [8,9] . For instance, a sequence of opcodes is used to

https://doi.org/10.1016/j.jisa.2017.10.005

2214-2126/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jisa.2017.10.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2017.10.005&domain=pdf
mailto:apektas@yandex.com
mailto:tacarman@gsu.edu.tr
https://doi.org/10.1016/j.jisa.2017.10.005

92 A. Pekta ̧s , T. Acarman / Journal of Information Security and Applications 37 (2017) 91–100

create a feature vector and three classifiers named as Ripper, C4.5

and IBK are used with ensemble learning algorithm to improve the

accuracy in classification [10] .

Meanwhile, function-call, control-flow, and data-flow graphs,

which are more robust to code obfuscation than n-gram, are in-

troduced for malware detection and classification [11] . In graph

mining approaches, given software is simply presented as a graph.

Then, this graph is compared with training graphs to identify the

most similar one found in the dataset. Since graph matching is

computationally expensive (an NP hard problem), graph compar-

ing algorithms have been proposed to differentiate maliciousness

from benign graphs.

Also, API calls reflect the aim of a program, and analyzing these

calls can reveal the behavior of a program with less computational

resource requirements. There are two methods to obtain the list of

API calls: static analysis (e.g., IDA Pro-disassembly tool) or dynamic

analysis (e.g., API hooking). Since a software can include multiple

execution paths, dirty, and unused codes, extraction of API calls

through static analysis by disassembler (e.g., with IDA Pro) is a

challenging task. Moreover, disassemblers can be evaded by anti-

disassembly methods. Last but not least, manual analysis of these

calls can be a tedious task since a simple executable can make a

considerably large amount of API calls. However, if a malware does

not feature run-time protection, one can accurately obtain API calls

through dynamic analysis.

In open literature, these methods are applied to detect and clas-

sify a malware by using different number of samples. The approach

in [12] presents classification system based on a n-gram feature

vector extracted from network level artifacts obtained via dynamic

analysis. The evolution set of this work consists of 3 families and

includes around 30 0 0 samples. By using SVN, k-NN and decision

tree, 80% accuracy in classification is achieved. In [13] , the API calls

and their arguments are used to model behavior. But evaluation is

made with a limited amount of malware samples. A pre-defined

set of API calls and a narrow feature space built to represent a

software is used in [14] but crucial information about behavior is

not extracted due to poor modeling of a malware. In [15] , a behav-

ioral fingerprint of a malware is composed of system state changes

such as files written, processes created and rather than sequences

or patterns of system calls. To measure similarity among the mal-

ware groups, a tree structure based on single-linkage clustering

algorithm is presented. The method is tested by using real world

malware samples (including samples that have not been detected

yet, and therefore do not have a signature) and more successful

classification results are obtained in comparison with anti-viruses

using signature-based methods.

In [16] , a classification method is introduced in order to de-

termine whether a given malware sample is a variant of known

malware family or a new malware strain. System call traces are

captured and the behavior of malicious software is monitored by

means of special representation called Malware Instruction Set

(MIST), which is inspired from instruction sets used in CPU. In this

representation, the behavior of a sample is characterized with a se-

quence of instructions. A behavior-based automated classification

method, which is motivated by [16] , is proposed in [17] . Dynamic

analysis report gives the status change caused by the executable

and events, this information is obtained from corresponding Win32

API calls and their certain parameters. Behavior unit strings are ex-

tracted as the features in order to distinguish malware families. To

reduce the dimension of feature space, string similarity and infor-

mation gain measure is used. A malware classification method us-

ing runtime actions and API calls of malware samples is presented

in [18] . Supervised machine learning Random Forests is applied

with 160 trees to classify 42,0 0 0 malware samples into 4 mal-

ware families. True positive rate is reached at 0.896 and false pos-

itive rate at 0.049 subject to the restricted number of families. In

[19] , malware samples are detected first and then classified as un-

known or known malware by applying Random Forests classifier.

Behavioral traces and API calls along with input parameters are

used to build the feature vector. 31,295 malware samples belong-

ing to 5 families and 837 benign samples are used for determining

whether they are known or unknown, true positive rate and false

positive rate is reached at 0.981and 0.099 subject to the 5 respec-

tive malware families. In [20] , malware detection based on API call

sequence analysis is presented. Malware samples are executed in a

virtual environment and API call sequences are traced during run-

time by using user-space hooking library called Detour [21] . Then,

DNA sequence alignment technique is applied to remove meaning-

less codes inserted into malware samples. Finally, the common API

call sequence patterns among malware are extracted by applying

the longest common sub-sequences (LCS) algorithm. 2727 kinds of

API into 26 groups are categorized in accordance with MSDN li-

brary. Classification accuracy is reached at 99% as the result of

testing dataset consisting of 6910 malware and 34 benign sam-

ples. The main limitation of this method is that computing LCS and

DNA sequence alignment is NP-hard problem, therefore computa-

tional complexity is high requiring more computational resources

and time.

Throughout evaluation of a malware and application of online

machine learning algorithms, a trade-off exists between the scala-

bility of large-scale malware classification and computational com-

plexity. For instance, when the feature space increases, data be-

come sparse and the computation time of algorithms increases ex-

ponentially with the number of malware samples making the anal-

ysis inefficient. This problem is also known as the curse of dimen-

sionality .

In this paper, we present a malware classification methodology

while grouping samples based on their runtime behavior patterns

by applying online machine learning. We capture implicit features

of behavior in order to improve the accuracy of classifying mal-

ware. We perform an extensive assessment of our technique using

standard classification evaluation metrics (e.g., accuracy, precision,

recall, F1-score) and a large number of malware families, showing

favorable evaluation results. Furthermore, we present the compu-

tational resource usages needed to deploy the presented classifi-

cation methodology. A preliminary version of this study was pre-

sented in [22] and run-time behaviors were extracted to build the

feature vector. Compared to [22] , additional results about using API

call sequences, resource usage with a more complete background

are elaborated.

The rest of the paper is organized as follows: Section 2 de-

scribes the methodology for extracting behavior of the file under

analysis along with the implementation details. Experiments and

their results are discussed in Section 3 . Conclusions and limitations

are given in Section 4 .

2. Methodology and implementation

The proposed framework consists of three major stages. The

first stage consists of extracting the behavior of the sample file un-

der scrutiny and observing its interactions with the OS resources.

At this stage, the sample file is run in two sandboxed environ-

ment; VirMon [4] and Cuckoo [5] . During the second stage, we

apply feature extraction to the analysis report. The label of each

sample is determined by using Virustotal [23] . Then at the final

stage, the malware dataset is partitioned into training and test-

ing set. The training set is used to obtain a classification model

and the testing set is used for evaluation purposes. An overview

of our system including its main functionalities is presented in

Fig. 1 .

From the viewpoint of this study, the run-time behavior of a

given file is modeled by fusing both API calls and changes made

Download	English	Version:

https://daneshyari.com/en/article/6884630

Download	Persian	Version:

https://daneshyari.com/article/6884630

Daneshyari.com

https://daneshyari.com/en/article/6884630
https://daneshyari.com/article/6884630
https://daneshyari.com/

