
Accepted Manuscript

FB-APSP: A new efficient algorithm for computing all-pairs shortest-paths

Dyson Pereira Junior, Emilio Carlos Gomes Wille

PII: S1084-8045(18)30244-3

DOI: 10.1016/j.jnca.2018.07.014

Reference: YJNCA 2180

To appear in: Journal of Network and Computer Applications

Received Date: 7 December 2017

Revised Date: 24 May 2018

Accepted Date: 23 July 2018

Please cite this article as: Junior, D.P., Wille, E.C.G., FB-APSP: A new efficient algorithm for computing
all-pairs shortest-paths, Journal of Network and Computer Applications (2018), doi: 10.1016/
j.jnca.2018.07.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jnca.2018.07.014

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

FB-APSP: A New Efficient Algorithm for
Computing All-Pairs Shortest-Paths

Dyson Pereira Junior and Emilio Carlos Gomes Wille

Abstract—We describe a new forward-backward method for
an all-pairs shortest-paths (APSP) algorithm. While most APSP
algorithms only scan edges forward, the algorithm proposed here
also scans all edges backward because it assumes that edges in the
outgoing and incoming adjacency lists of the vertices appear with
the same importance. The running time of the algorithm on a di-
rected graph with n vertices, and m edges and positive real-valued
edge weights in a deterministic way is O(nδ2 d2logδ (n−1)−1e), and
the space complexity is O(nδd2logδ (n−1)−1e), where δ = m/n is
the density of the graph. Simulations on graphs with up to
10000 vertices with real, positive weights show that our FB-APSP
algorithm, using additional working space less than 75% of space
used by Speed-Up Floyd-Warshall algorithm, is faster on large
sparse graphs, particularly planar graphs.

Index Terms—Algorithms, Graph Theory, Networks, Routing,
Traffic Control.

I. INTRODUCTION

THE all-pairs shortest-paths (APSP) problem is one of
the most fundamental graph problems and has multiple

applications, such as network routing in communications pro-
tocols, transportation routing in road networks and robotics,
and VLSI design in microelectronics. The APSP problem [1]
is to determine, for a weighted, directed graph G = (V, E, c),
the shortest path between every pair of vertices, where |V |= n,
|E |= m, and c : E → R+ is the edge weight.

When solving APSP problems on graphs in the real world,
the running time of the algorithm and the size of its working
space are the key issues. Many algorithms that solve the
APSP problem efficiently use a large working space (O(n2))
[1]. Division of the APSP problem into n SSSP (single-
source shortest-path) problems has become one of the classic
approaches used to solve the problem [1]. An SSSP algorithm
is run once for each source-vertex. Dijkstra’s algorithm [2] can
solve SSSP problems on graphs with positive edge weights
and solves the APSP problem in O(mn log n) time using a
binary heap [3] and in O(mn+n2 log n) time using a Fibonacci
heap [4]. When Dijkstra’s algorithm is used to solve the APSP
problem, the term n-Dijkstra is normally used. The algorithm
is a good choice in many real-world situations, although
various proposals for solving the SSSP problem have been put
foreward [5]. The information contained in the shortest paths
from the other vertices is not available to Dijkstra’s algorithm
while an SSSP from a source vertex is being calculated. Some
algorithms that use the information contained in the shortest

D. Pereira Junior and E. C. G. Wille are with the Department of Electronics,
Federal Technological University of Paraná (UTFPR), Curitiba, PR, Brazil. e-
mail: dyson@utfpr.edu.br, ewille@utfpr.edu.br.

Manuscript received April 19, 2005; revised August 26, 2015.

paths from multiple source vertices are discussed below. One
approach that uses a dynamic programming formulation is the
Floyd-Warshall algorithm [6], [7].

A speed-up version of the Floyd-Warshall algorithm was
proposed by Aini and Salehipour [8] for which the APSP
problem is solved with lower computational cost. Such algo-
rithm, hereinafter referred to as the SU-FW algorithm, reduces
the amount of calculation from that required by the Floyd-
Warshall algorithm substantially.

The property every subpath of a shortest path is a shortest
path [1] was used by Demetrescu and Italiano in the algorithm
proposed in [9] to reduce the number of operations in a priority
queue. Priority queues are considered bottlenecks for many
shortest path algorithms, including Dijkstra’s algorithm. The
algorithm proposed by Demetrescu and Italiano (hereinafter
referred to as DI algorithm), requires a large working space
of the order of O(n2) for finding the APSP on general directed
graphs with non-negative real-valued edge weights.

In this work, we propose a new forward-backward method
for an all-pairs shortest-paths algorithm. While most APSP
algorithms only scan edges forward, the algorithm proposed
here also scans all edges backward because it assumes that
edges in the outgoing and incoming adjacency lists of the
vertices appear with the same importance. Hereinafter our
algorithm will be referred to as FB-APSP algorithm. In order
to solve the shortest-paths problem, two extreme approaches
are known: one that makes use of the shortest paths from
multiple source vertices when it is executing but uses a large
working space (O(n2)), and another that uses a small working
space when it is executing (O(m + n)) but does not make
use of the shortest paths from other source vertices. In this
paper we describe our contribution to finding a solution to the
APSP problem for any graph using an algorithm that is the
best combination of these two extremes.

In order to validate our proposal, we compare results derived
from the FB-APSP algorithm with those from the DI algorithm
[9], from the FW algorithm [1] and from the SU-FW algorithm
[8] (to our knowledge the best in literature). Often, when
evaluating a computational algorithm, the execution time is
the most important factor. Our proposal takes into account
this issue in detriment to the use of memory space. Our
analysis shows that the FB-APSP algorithm is substantially
faster than SU-FW at the expense of using a little more
memory. The running time of the FB-APSP algorithm on
a directed graph with positive real-valued edge weights in
a deterministic way is O(nδ2d2logδ (n−1)−1e), and the space
complexity is O(nδd2logδ (n−1)−1e), where δ = m/n is the
density of the graph.

Download English Version:

https://daneshyari.com/en/article/6884638

Download Persian Version:

https://daneshyari.com/article/6884638

Daneshyari.com

https://daneshyari.com/en/article/6884638
https://daneshyari.com/article/6884638
https://daneshyari.com

