
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Distributed learning of deep neural network over multiple agents

Otkrist Gupta∗, Ramesh Raskar
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA

A R T I C L E I N F O

Keywords:
Multi party computation
Deep learning
Distributed systems

A B S T R A C T

In domains such as health care and finance, shortage of labeled data and computational resources is a critical
issue while developing machine learning algorithms. To address the issue of labeled data scarcity in training and
deployment of neural network-based systems, we propose a new technique to train deep neural networks over
several data sources. Our method allows for deep neural networks to be trained using data from multiple entities
in a distributed fashion. We evaluate our algorithm on existing datasets and show that it obtains performance
which is similar to a regular neural network trained on a single machine. We further extend it to incorporate
semi-supervised learning when training with few labeled samples, and analyze any security concerns that may
arise. Our algorithm paves the way for distributed training of deep neural networks in data sensitive applications
when raw data may not be shared directly.

1. Introduction

Deep neural networks have become the new state of the art in
classification and prediction of high dimensional data such as images,
videos and bio-sensors. Emerging technologies in domains such as
biomedicine and health stand to benefit from building deep neural
networks for prediction and inference by automating the human in-
volvement and reducing the cost of operation. However, training of
deep neural nets can be extremely data intensive requiring preparation
of large scale datasets collected from multiple entities (Chervenak et al.,
2000; Chuang and Sirbu, 2000). A deep neural network typically con-
tains millions of parameters and requires tremendous computing power
for training, making it difficult for individual data repositories to train
them.

Sufficiently deep neural architectures needing large super-
computing resources and engineering oversight may be required for
optimal accuracy in real world applications. Furthermore, application
of deep learning to such domains can sometimes be challenging because
of privacy and ethical issues associated with sharing of de-anonymized
data. While a lot of such data entities have vested interest in developing
new deep learning algorithms, they might also be obligated to keep
their user data private, making it even more challenging to use this data
while building machine learning pipelines. In this paper, we attempt to
solve these problems by proposing methods that enable training of
neural networks using multiple data sources and a single super-
computing resource.

2. Related work

Deep neural networks have proven to be an effective tool to classify
and segment high dimensional data such as images (Krizhevsky et al.,
2012), audio and videos (Karpathy and Fei-Fei, 2015). Deep models can
be several hundreds of layers deep (He et al., 2016), and can have
millions of parameters requiring large amounts of computational re-
sources, creating the need for research in distributed training meth-
odologies (Dean et al., 2012). Interesting techniques include distributed
gradient optimization (Mcdonald et al., 2009; Zinkevich et al., 2010),
online learning with delayed updates (Langford et al., 2009) and
hashing and simplification of kernels (Shi et al., 2009). Such techniques
can be utilized to train very large scale deep neural networks spanning
several machines (Agarwal and Duchi, 2011) or to efficiently utilize
several GPUs on a single machine (Agarwal et al., 2014). In this paper
we propose a technique for distributed computing combining data from
several different sources.

Secure computation continues to be a challenging problem in
computer science (Sood, 2012). One category of solutions to this pro-
blem involve adopting oblivious transfer protocols to perform secure
dot product over multiple entities in polynomial time (Avidan and
Butman, 2006). While this method is secure, it is somewhat impractical
when considering large scale datasets because of resource require-
ments. A more practical approach proposed in Avidan and Butman
(2006) involves sharing only SIFT and HOG features instead of the
actual raw data. However, as shown in (Dosovitskiy and Brox), such
feature vectors can be inverted very accurately using prior knowledge

https://doi.org/10.1016/j.jnca.2018.05.003
Received 11 October 2017; Received in revised form 30 April 2018; Accepted 6 May 2018

∗ Corresponding author.
E-mail address: otkrist@mit.edu (O. Gupta).

Journal of Network and Computer Applications 116 (2018) 1–8

1084-8045/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1016/j.jnca.2018.05.003
mailto:otkrist@mit.edu
https://doi.org/10.1016/j.jnca.2018.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.05.003&domain=pdf

of the methods used to create them. Neural networks have been shown
to be extremely robust to addition of noise and their denoising and
reconstruction properties make it difficult to compute them securely
(Vincent et al., 2010). Neural networks have also been shown to be able
to recover an entire image from only a partial input (Pathak et al.),
rendering simple obfuscation methods inert.

Widespread application of neural networks in sensitive areas such as
finance and health, has created a need to develop methods for both
distributed and secure training (Secretan et al., 2007; Chonka et al.,
2011; Wu et al., 2007) and classification in neural networks. Under
distributed and secure processing paradigms, the owner of the neural
network doesn't have access to the actual raw data used to train the
neural network (Barni et al., 2006). This also includes secure paradigms
in cloud computing (Karam et al., 2012; Subashini and Kavitha, 2011),
virtualization (Mackay et al., 2012) and service oriented architectures
(Baker et al., 2015). The secure paradigms may also extend to the
neural activations and (hyper)parameters. Such algorithms form a
subset inside the broader realm of multi-party protocol problems in-
volving secure computation over several parties (Goldreich et al., 1987;
Yao, 1986). Some interesting solutions include using Ada-boost to
jointly train classifier ensembles (Zhang and Zhong, 2013), using
random rotation perturbations for homomorphic pseudo-encryption
(Chen and Liu) and applying homomorphic cryptosystem to perform
secure computation (Orlandi et al., 2007).

3. Theory

In this paper we propose new techniques that can be used to train
deep neural networks over multiple data sources while mitigating the
need to share raw labeled data directly. Specifically we address the
problem of training a deep neural network over several data entities
(Alice(s)) and one supercomputing resource (Bob). We aim at solving
this problem while satisfying the following requirements:

1. A single data entity (Alice) doesn't need to share the data with Bob
or other data resources.

2. The supercomputing resource (Bob) wants control over the archi-
tecture of the Neural Network(s)

3. Bob also keeps a part of network parameters required for inference.

In upcoming sections we will show how to train neural networks
between multiple data entities (Alice(s)) and a supercomputing re-
source (Bob). Techniques will include methods which encode data into
a different space and transmit it to train a deep neural network. We will
further explore how a third-party can use this neural network to classify
and perform inference. Our algorithm can be run using one or multiple
data entities, and can be run in peer-to-peer or centralized mode. Please
see Fig. 1 for the schematic depiction of algorithm modalities.

3.1. Distributed training over single entity

We will start by describing the algorithm in its simplest form which
considers training a neural network using data from a single entity and
supercomputing resource. Let us define a deep neural network as a
function F, topologically describable using a sequence of layers {L0, L1,
…LN}. For a given input (data), the output of this function is given by F
(data) which is computed by sequential application of layers F(data)←
LN(LN−1…(L0(data))).

Let Gloss(output, label) denote the customized loss function used for
computing gradients for the final layer. Gradients can be back-
propagated over each layer to generate gradients of previous layers and
to update the current layer. We will use L gradient()i

T to denote the
process of backpropagation over one layer and FT(gradient) to denote
backpropagation over the entire Neural Network. Similar to forward
propagation, backpropagation on the entire neural network is com-
prised of sequential backward passes FT

← …gradient L L L gradient() ((()))T T
N
T

1 2 . Please note that the backward
passes will require activations after the forward pass on individual
perceptrons.

Finally, Send(X, Y) represents the process of sending data X over the
network to entity Y· In the beginning, Alice and Bob initialize their
parameters randomly. Alice then iterates over its dataset and transmits
encoded representations to Bob. Bob then computes losses and gra-
dients and sends the gradients back to Alice. Algorithm 1 describes how
to train a deep neural classifier using a single data source.

3.1.1. Correctness
Here we analyze if training using our distributed algorithm pro-

duces the same results as a normal training procedure. Under a normal
training procedure we would first compute forward pass output← F
(data) followed by computation of loss gradients gradients←G(output,
label). These gradients will be backpropagated to refresh weights F′←
FT(gradients).

Algorithm 1
Distributed Neural Network training over 2 agents.

1: Initialize:
←ϕ Random Initializer (Xavier/Gaussian)

←F L L L{ , , ... }a n0 1

← + +F L L L{ , , ... }b n n N1 2

2: Alice randomly initializes the weights Fa using ϕ
3: Bob randomly initializes the weights of Fb using ϕ
4: whileAlice has new data to train on do
5: Alice uses standard forward propagation on data

▷ ←X F data()a

6: Alice sends nth layer output X and label to Bob
▷ Send X label Bob((,),).

7: Bob propagates incoming features on its network
▷ ←output F X()b

8: Bob generates gradients for its final layer
▷ ← ′gradient G output label(,)

9: Bob backpropagates the error in Fb until +Ln 1

▷ ′ ′ ←F gradient F gradient, ()b b
T

10: Bob sends gradient of Ln to Alice
▷ ′Send gradient Alice(,)

11: Alice backpropagates gradients received
▷ ′ ← ′F F gradient, _ ()a a

T

12: end while

Since forward propagation involves sequential application of in-
dividual layers we concur that F(data) is same as Fb(Fa(data)). Therefore
the process of sequential computation and transmission followed by
computation of remaining layers is functionally identical to application
of all layers at once. Similarly because of the chain rule in differ-
entiation, backpropagating FT(gradients) is functionally identical to se-
quential application of F F gradients(())a

T
b
T . Therefore, we can conclude

that our algorithm will produce identical results to a normal training
procedure.

Algorithm 2
Distributed Neural Network over N + 1 agents.

1: Initialize:
←ϕ Random Initializer (Xavier/Gaussian)

←F L L L, , ...a n,1 0 1

← + +F L L L, , ...b n n N1 2

2: Alice1 randomly initializes the weights of Fa,1 using ϕ
3: Bob randomly initializes the weights of Fb using ϕ
4: Bob sets Alice1 as last trained

(continued on next page)

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

2

Download English Version:

https://daneshyari.com/en/article/6884685

Download Persian Version:

https://daneshyari.com/article/6884685

Daneshyari.com

https://daneshyari.com/en/article/6884685
https://daneshyari.com/article/6884685
https://daneshyari.com

