
Journal of Network and Computer Applications 113 (2018) 14–25

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

A fine-grained rule partition algorithm in cloud data centers

Wei Jiang a, Wanchun Jiang a, Weiping Wang a, Haodong Wang b, Yi Pan c,
Jianxin Wang a,*

a School of Information Science and Engineering, Central South University, Changsha, 410083, China
b Department of Electrical Engineering and Computer Science, Cleveland State University, OH 44115, USA
c Department of Computer Science, Georgia State University, Atlanta, GA 30302-4110, USA

A R T I C L E I N F O

Keywords:
Rule partition
Fine-grained
Cloud

A B S T R A C T

To better control the individual data flow in the cloud, traffic management policies are in need of increasing
fine-grained rules, causing a dramatic increase in rules. The limited CPU or memory resources at the servers
become the bottleneck when those policies are employed in large-scale data centers. To overcome these resource
constraints, the rule partition algorithm is indispensable to decompose the rule set so that some rules can be
migrated away. This paper shows that the current rule partition algorithm of vCRIB may lead to a high traffic
overhead and high rule inflation in certain cases. Motivated by this observation, we propose a Fine-grained Rule
Partition (FRP) algorithm. Different from vCRIB which divides the rule set based on the unit of rules within the
same source address, FRP treats the individual rule as a unit, and thus reduce the traffic overhead by retaining
more deny rules. In addition, FRP controls the rule inflation by optimizing the number of redirection rules as
well. The simulation results confirm that FRP outperforms vCRIB, especially when the resources are severely
constrained.

1. Introduction

In cloud data centers, for the better management of the data
flow, network operators need to specify an increasing number of
detailed policies. For instance, per-virtual machine (VM)-pair fine-
grained access control rules are adopted by cloud providers to safeguard
the network (Popa et al., 2010). The fine-grained bandwidth allocation
policies and the rate limit policies require per-VM rules to guarantee
a fair share of the bandwidth (Popa et al., 2012). This arrangement
directly causes the rule explosion in large-scale data centers, quickly
exhausting the CPU and memory resources.

Recent researches (Moshref et al., 2013; Kang et al., 2013; Zhang
et al., 2014; Kanizo et al., 2013; Yu et al., 2010) indicate that network
operators apply the rule partition algorithm to relieve the resource con-
straints. More specifically, the original rule set is divided into multiple
smaller subsets. A part of subsets is migrated away from the original
server to reduce the usage of the resources. In fact, each of the migra-
tory subsets is replaced by a redirection rule1 and then distributed to
other devices.

* Corresponding author.
E-mail addresses: jiangwei_csu@126.com (W. Jiang), jiangwc@mail.csu.edu.cn (W. Jiang), wpwang@mail.csu.edu.cn (W. Wang), hwang@eecs.csuohio.edu (H. Wang), yipan@gsu.

edu (Y. Pan), jxwang@mail.csu.edu.cn (J. Wang).
1 Rule partition algorithm creates the redirection rule to reduce the size of the original rule set by migrating the selected rule subsets. For more details, see Section 2.

It is obvious that the basic requirement of the rule partition algo-
rithm is to guarantee the retained rules satisfy the resource constraints.
Additionally, extra resources are required to store the increased rules,
such as the created redirection rules to replace the migratory subsets
and the replicated rules to maintain the correctness of policy (Moshref
et al., 2013). Therefore, the partition algorithm is expected to minimize
the increased rules. In other words, the partition algorithm has small
rule inflation.

Another correlative performance indicator is traffic overhead, which
refers to the unexpected traffic that is redirected due to the rule migra-
tion. We classify the rules as accept rules or deny rules. The traffic
matching the accept rule is allowed to pass, while the traffic matching
the deny rules is not. If a deny rule is migrated to a new device, the
traffic matching this migratory deny rule first needs to travel to the
new device and then be blocked. Obviously, the partition algorithm is
expected to retain all deny rules at the original servers to minimize this
unwanted traffic.

vCRIB (Moshref et al., 2013) is proposed to partition the rule set
based on the source IP addresses of rules. A part of the rules is migrated

https://doi.org/10.1016/j.jnca.2018.03.025
Received 8 July 2017; Received in revised form 5 March 2018; Accepted 22 March 2018
Available online 29 March 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2018.03.025
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.03.025&domain=pdf
mailto:jiangwei_csu@126.com
mailto:jiangwc@mail.csu.edu.cn
mailto:wpwang@mail.csu.edu.cn
mailto:hwang@eecs.csuohio.edu
mailto:yipan@gsu.edu
mailto:yipan@gsu.edu
mailto:jxwang@mail.csu.edu.cn
https://doi.org/10.1016/j.jnca.2018.03.025


W. Jiang et al. Journal of Network and Computer Applications 113 (2018) 14–25

away from the original servers to satisfy the resource constraints. More-
over, vCRIB decreases the rule inflation by replicating the rule that
spans multiple source IP addresses, instead of splitting it into several
small rules.

However, vCRIB (Moshref et al., 2013) suffers two disadvantages.
First, the rule partition algorithm in vCRIB is not fine-grained enough.
It’s more desirable to retain the deny rules to curb the unwanted traffic.
However, in vCRIB, in order to prevent a certain deny rule from being
migrated, the accept rules of the same source IP address must be held.
That means significant resources which have been used to accommo-
date more deny rules are consumed. Second, the partition algorithm of
vCRIB may cause high rule inflation as it does not make the number of
redirection rules optimize.

Motivated by the above observations, we propose a Fine-grained
Rule Partition (FRP) algorithm to address the above issues. Instead of
grouping rules by their source IP addresses as in vCRIB, FRP treats the
individual rule as a unit. In this way, FRP retains as many deny rules
as possible, together with a smaller traffic overhead. Moreover, with
each redirection rule migrating as many accept rules as possible, FRP
reduces the redirection rules and the rule inflation.

To evaluate FRP, we utilize two ACL rulesets included in the vCRIB
code (Moshref, 2013), and also operate Classbench (Taylor and Turner,
2007) to generate two different rulesets as the representative of real-
world access control. In addition, we validate the impacts of the dif-
ferent factors, such as resource constraints, the deny rule ratios, traffic
localities and different types of rulesets. The simulation results con-
firm that FRP outperforms vCRIB in terms of the traffic overhead and
the rule inflation ratio, especially when the resources are severely con-
strained.

This paper is organized as follows. In Section 2, we introduce the
background and related work about rule partition algorithm. Our moti-
vation is presented in Section 3. Section 4 shows the detail of FRP and
Section 5 is the evaluation of FRP. We conclude the paper in Section 6.

2. Background and related work

2.1. Background

Fine-grained policies (Verma, 2002; Ferraiolo et al., 2003; Popa et
al., 2010, 2012; Al-Fares et al., 2010) greatly improve cloud security,
network utilization, application performance, and the fairness. How-
ever, a simple fine-grained policy may result in thousands or even mil-
lions of rules. For instance, there can be 200k rules per server for access
control or fair bandwidth allocation in a data center with 100k servers
and 20 VMs per server (Moshref et al., 2013). Unfortunately, the mem-
ory resources of the network interface cards, where servers’ hypervisors
offload rules, can merely store thousands of rules. In addition, the avail-
able servers’ CPU budget for rule processing is also limited (Moshref et
al., 2013). One solution proposed by vCRIB is using partition algorithm
to offload a part of the rules from hypervisors to switches. Because the
switches (e.g., TCAM (Rottenstreich and Tapolcai, 2017)) can also pro-
cess the rules.

Fig. 1 shows a simple example of a rule partition algorithm. There
are four VMs on server 1 (S1) and two VMs on server 2 (S2). The ACL
rules are required to be placed on S1 to limit the unwanted network
traffic generated by VM1, VM2, VM4 and VM5. Each rule consists of
two parts: the action part and the predicate part. The former is to either
accept or deny traffic. The latter includes a source IP address and a
destination IP address. For instance, as shown in Fig. 2, the accept rule
A2 with values (VM0 - VM5, VM1) represents a rule that accepts the
traffic from any source IP of VM0 - VM5 to the destination IP of VM1.
Besides, the rules are always assigned with priorities. When an incom-
ing packet header matches more than one rule, the action of the rule
with the highest priority is executed. If no matching is found, a default
rule is performed (Ferraiolo et al., 2003).

Fig. 1. An example of rule manage system.

The rule spanning multiple source IP addresses is called the
multiple-span rule. For instance, A2 is a multiple-span rule which spans
the source IP addresses from VM0 to VM5.

Accordingly, the rule occupying the same areas with another in the
multi-dimensional space is identified as overlap. For instance, D3 over-
laps with A5 as they have the common area (VM1, VM3). If all parts of
one rule are within another rule in the multi-dimensional space, then
this rule is inside the other rule. For instance, D4 with values (VM4,
VM0) is inside the rule R′ (VM4 - VM5, VM0 - VM5) as shown in Fig. 3.

Let us consider a scenario that S1 can only store eight rules and there
are eleven ACL rules to be deployed on S1. The ACL rules consist of six
accept rules, four deny rules, and a default rule D0 as shown in Fig. 2.
In this condition, the memory constraint prohibits the deployment of
all eleven ACL rules. Hence, the rule partition should be executed to
reduce the size of the original rule set. According to the rule partition
algorithm, a part of the rule set are selected to be migrated away so
that the retained rules can be stored at S1. To maintain the same policy
semantics, the migrated rules are replaced by one or multiple redirec-
tion rules.

The redirection rule is a special accept rule that all the packets
falling in redirection rule can be forwarded without any modification

Fig. 2. The introduction of the rule set (A2, A5, A6, A8, A9 and A10 are accept rules. D1,
D3, D4, and D7 are deny rules. D0 is default rule.)

15



Download English Version:

https://daneshyari.com/en/article/6884724

Download Persian Version:

https://daneshyari.com/article/6884724

Daneshyari.com

https://daneshyari.com/en/article/6884724
https://daneshyari.com/article/6884724
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@5: 
	tooltip zref@8: 


