Journal of Network and Computer Applications 108 (2018) 1-19

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

AN

LSEVIER

journal homepage: www.elsevier.com/locate/jnca

Review
Recent advancements in garbled computing: How far have we come R
towards achieving secure, efficient and reusable garbled circuits oy

Ahsan Saleem ?, Abid Khan?, Furqan Shahid?, M. Masoom Alam ®",
Muhammad Khurram Khan”

a Department of Computer Science, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
b Center of Excellence in Information Assurance (CoEIA), King Saud University, Saudi Arabia

ARTICLE INFO ABSTRACT

Keywords:

Garbled circuits
Secure computation
oT

Reusable GC

Privacy free garbling

Secure function evaluation (SFE) is a cryptographic protocol that facilitates participants to compute a function on
their private inputs in such a way that privacy of their inputs is preserved. In early 80’s Andrew Yao proposed a
solution for secure function evaluation known as garbled circuits based on series of Boolean gates and encryption
of truth tables. The approach was thought to be theoretically very appealing, however, the scheme was not
practical due to sever implementation issues in its efficiency and reusability. However, since then the garbled
circuits have evolved and the common notion of impractical garbled circuit have changed greatly mainly due to
great deal of interest shown and efforts made by the researchers in a bid to make Yao’s garbled circuits practical.
In this paper we have analyzed some of the most significant contributions of researchers in enhancing various
aspects of garbled circuits and provided a comprehensive comparative analysis and discussed the pros and cons
of such schemes. Furthermore, we provide a classification of existing garbled circuit schemes in the form of a
comprehensive thematic survey. We conclude our paper by providing new research directions in this domain for

new researchers.

1. Introduction

Secure function evaluation is one of the promising concepts in the
field of cryptography that is basically aimed at allowing two or more
participants to evaluate a function on their private inputs. The protocol
commits privacy to each of the participants inputs. Roots of this concept
can be traced back to early 80s, when Yao proposed two-party secure
function evaluation (Yao, 1982, 1986), for allowing two participants
to evaluate a given function on their private inputs. In Yao’s construc-
tion, the concept of oblivious transfer (OT) (Halpern and Rabin, 1983;
Even et al., 1985) is used where parties can evaluate garbled circuits
by exchanging encrypted information without learning about input of
other parties. The idea was enhanced by Goldreich et al. (1987) from
“two-party” to “multi-party” that allowed multiple participants to eval-
uate a function on their private inputs. After the invention of Multi-
Party Computation (MPC), the Two-Party Computation (2PC) can posi-
tively be thought as a selected case of MPC. Although, MPC also covers
2PC, 2PC has its own special importance because of its applications in
different areas of cryptography, including secure function evaluation,

* Corresponding author.
E-mail address: masoom.alam@comsats.edu.pk (M. Masoom Alam).

https://doi.org/10.1016/j.jnca.2018.02.006

one-time programs, key dependent message security, verifiable com-
putation, and homomorphic/functional encryption (Vinayagamurthy,
2014) but not limited to techniques mentioned above. Because of this
reason we can find lots of research work on garbled circuits includ-
ing, implementations, enhancements, and optimizations targeting spe-
cial case i.e., 2PC rather MPC. Yao’s protocol for secure function evalu-
ation requires translation of the underlying function into its equivalent
Boolean Circuit and then garbling each gate of the circuit. Since the
core concept is “garbling” that’s why it is sometimes referred as “Yao
garbling scheme”. In this paper, we also have used this term many times
in the survey that refers to “Yao two-party secure function evaluation
protocol” (see Tables 1-3).

Yao garbling process consists of mainly four steps, i.e., transforma-
tion of the function (to be evaluated) into its equivalent Boolean Circuit
(consisting of gates AND, OR, XOR etc.). Then inputs and outputs of
each gate are garbled by replacing 0 and 1 with random values. On the
basis of those garbled values, a garbled table is created for each gate;
these tables reveal nothing about their corresponding gates (either it
is AND, OR etc.). However, the output of the final gate is not garbled.

Received 27 November 2017; Received in revised form 18 January 2018; Accepted 6 February 2018

Available online 12 February 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.jnca.2018.02.006
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.02.006&domain=pdf
mailto:masoom.alam@comsats.edu.pk
https://doi.org/10.1016/j.jnca.2018.02.006

Table 1

Comparative analysis of implementation techniques.

Paper

Security Model

Scope

Specification Language

Optimization Strategies

Major Limitations

(Henecka et al., 2010)

(Kreuter et al., 2013)

(Songhori et al., 2015)

(Huang et al., 2011)

(Kreuter et al., 2012)

(Pinkas et al., 2009)

(Holzer et al., 2012)

(Malka, 2011)

(Malkhi et al., 2004)

Semi-honest

Both Semi-honest and
Malicious

Semi-honest

Semi-honest

Malicious

Semi-honest, Covert, and
Malicious

Semi-honest; Malicious

Semi-honest

Limited case of malicious
adversaries

Compiler, Run-time Envi-
ronment

Compiler, two Inter-
preters (one in C, second
in Java)

Libraries (HDL Synthesis)
for circuit generation

Java based Library, Exe-
cution Environment

Compiler, Optimizer

Based on compiler of
Fairplay; but used their
own runtime environ-
ment

Compiler (CBMC-GC)

JAVA based library (API)

Compiler, High-level lan-
guage, Run time environ-
ment

TASTYL (Python based language)

Any language can be used (works on
byte code)

HDL Languages (Verilog, VHDL) or
High-Level Languages with HLS compat-
ibility (like C, C++, Python)

JAVA will be used for function and cir-
cuit specifications

A un-typed language with static scoping

Same as Fairplay (SFDL)

ANSI C

JAVA

Secure Function Definition Language
(SFDL); a subset of Pascal or C

Hybrid SFE, Fast Multiplication Tables
(Karatsuba), Shifting of most computa-
tions to less time critical phase (setup
phase), Free XOR, Garbled Row Reduc-
tion, Pipelined approach, Efficient OT
extension (by Ishai et al.)

Online circuit compression, Lazy gate gen-
eration, Ephemeral circuits, Free XOR
gates, used priority queue to handle loops
rather than stack, Dead gate removal,
Optimization is performed before loops
are un-rolled

Sequential representation of circuits,
Exploitation of HDL synthesis libraries to
generate circuits with minimum number
of non-XOR gates

The whole circuit is not loaded into mem-
ory at once; but a pipelined approach is
used

Parallelization of all steps of the proto-
col, Circuit Pipelining, AES-NI, Removal of
redundant, unused, and identity gates

Replacing component circuits by simple
combination of circuits, Removing the
components whose output is either always
be 0 or always be 1, Garbled Row Reduc-
tion

Syntactic preprocessing, Exploiting CBMC
to leave placeholders for basic operations
(like addition and multiplication), Pop-
ulating these placeholders with compo-
nents having minimum number of non-
XOR gates

Circuits (here called components) are com-
piled only once, Client and Server hold
only a small part of circuit in memory at
a time, Circuit is garbled and evaluated in
segments rather than as a whole

Code simplification, Duplicate code
removal, Dead code elimination, Efficient
OT protocol (by Naor and Pinkas)

Evaluating the same function on
different inputs requires compila-
tion each time, Integration with
other applications will require
changing in the source code (due
to absence of APIs)

The whole circuit is created first
and then evaluation starts; Mem-
ory requirement for storing whole
of the circuit (in case of very large
functions) may be a challenge
Programmer is required to be able
to design Boolean circuits

Scalability, Function description
language is difficult to use, Mem-
ory requirement is linear with the
circuit size

Scalability; Even a circuit with
millions of gates require days to
complete

‘D 32 WIS Y

611 (8102) 801 suoupoyddy Loinduio) pup YL0MIIN fo [punor



Download English Version:

https://daneshyari.com/en/article/6884790

Download Persian Version:

https://daneshyari.com/article/6884790

Daneshyari.com


https://daneshyari.com/en/article/6884790
https://daneshyari.com/article/6884790
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 


