
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

A hardware testbed for learning-based spectrum handoff in cognitive radio
networks

Koushik A.M.a, Elizabeth Bentleyb, Fei Hua,⁎, Sunil Kumarc

a Electrical and Computer Engineering, The University of Alabama, USA
b Air Force Research Laboratory, Rome, New York, USA
c Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA

A R T I C L E I N F O

Keywords:
Spectrum handoff
Transfer learning
Reinforcement learning
Q learning
Cognitive Radio Network (CRN)
GNU radio
USRP
Testbed

A B S T R A C T

A real-time cognitive radio network (CRN) testbed is implemented by using the universal software radio
peripheral (USRP) and GNU Radio to demonstrate the use of reinforcement learning and transfer learning
schemes for spectrum handoff decisions. By considering the channel status (idle or occupied) and channel
condition (in terms of packet error rate), the sender node performs the learning-based spectrum handoff. In
reinforcement learning, the number of network observations required to achieve the optimal decisions is often
prohibitively high, due to the complex CRN environment. When a node experiences new channel conditions, the
learning process is restarted from scratch even when the similar channel condition has been experienced before.
To alleviate this issue, a transfer learning based spectrum handoff scheme is implemented, which enables a node
to learn from its neighboring node(s) to improve its performance. In transfer learning, the node searches for an
expert node in the network. If an expert node is found, the node requests the Q-table from the expert node for
making its spectrum handoff decisions. If an expert node cannot be found, the node learns the spectrum handoff
strategy on its own by using the reinforcement learning. Our experimental results demonstrate that the machine
learning based spectrum handoff performs better in the long term and effectively utilizes the available spectrum.
In addition, the transfer learning requires less number of packet transmissions to achieve an optimal solution,
compared to the reinforcement learning.1

1. Introduction

The cognitive radio network (CRN) is considered as a promising
solution to address the issue of spectrum scarcity and effective
spectrum utilization. In CRN, the secondary users (SU) are allowed
to occupy the spectrum when it is not used by the primary users (PU),
which is known as the dynamic spectrum access (DSA) (Crohas, 2008).
However, the frequent interruptions from PUs in CRN force the SUs to
perform handoff to other idle channels. The spectrum handoff can also
occur due to node mobility (Wang and Wang, 2008; Song and Xie,
2011; Kumar et al., 2016). Thus, it is very important for SUs to keep
monitoring the link status (due to temporal mobility) and link quality
(spatial mobility).

In this paper, we implement the spectrum handoff process in a CRN
testbed using the universal software radio peripheral (USRP) boards
and GNU Radio. Our main goal is to enable each SU node to learn the
spectrum handoff based on its past observations. Since CRN is able to
learn and reason the radio environment through a cognitive engine, the
use of machine learning algorithms can enhance the learning and

reasoning of the spectrum handoff process. Here, a learning model
represents the process of acquiring the knowledge by interacting with
the environment, to improve the future decisions. In recent years, the
machine learning algorithms have been widely used in CRN (Hossain
et al., 2014; Bkassiny et al., 2013).

In this paper, we implement the reinforcement learning (RL) and
transfer learning (TL) based spectrum handoff schemes in CRN, by
using the GNU Radio programming environment (Ke-Yu and Chen,
2006) for multimedia transmissions (such as real-time video). Note
that a myopic spectrum handoff scheme may not achieve the best
performance in the long-term, since it tends to select the channels
which maximize the short-term reward. When an SU learns about the
spectrum handoff decisions on its own by using the RL algorithm (Wu
et al., 2014), it typically needs more time to converge to the optimal
solution, which is undesirable for real-time data transmission. Instead,
a new node can seek help from other nodes in the network, which are
termed as the ‘expert nodes’ (Galindo-Serrano et al., 2010; Giupponi
et al., 2010; Dohler et al., 2010). Specifically, when a new (or learning)
node joins the network, it searches for an expert node in the network by

https://doi.org/10.1016/j.jnca.2017.11.003
Received 16 August 2017; Received in revised form 2 October 2017; Accepted 10 November 2017

⁎ Corresponding author.
1 DISTRIBUTION STATEMENT A: Approved for Public Release; distribution unlimited 88ABW-2017–6274; 13 Dec 2017.

Journal of Network and Computer Applications 106 (2018) 68–77

Available online 31 January 2018
1084-8045/ © 2018 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2017.11.003
https://doi.org/10.1016/j.jnca.2017.11.003
https://doi.org/10.1016/j.jnca.2017.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.11.003&domain=pdf

using the control channel. If an expert node is found, it shares its
optimal strategy with the new node to help with the spectrum handoff
decisions. This is termed as the ‘transfer learning’ (TL). When the
communication tasks are similar between the learning and expert
nodes, the knowledge transferred from the expert node enables the
learning node to start communications from the optimal condition
without taking much time to acquire knowledge about the RF
environment, which significantly enhances its performance. If there
is no expert node in the network, the new node learns about the
environment on its own and builds the optimal strategy by using RL.

We address the following issues in building a hardware testbed for
intelligent spectrum handoff. (i) How often should the node sense the
channel? (ii) How often should the learning algorithm be updated?
(iii) How long should the learning node wait for the response from the
expert node? Since the GNU Radio software does not have any pre-
defined machine learning functions, all the modules need to be built
from the scratch. The main contributions of this paper are twofold:

(1) Real-time CRN Testbed: The USRP and GNU Radio based testbed,
which uses the directional antennas, is built for multimedia data
transmissions. Using USRP 210 series we have implemented
spectrum sensing, spectrum handoff and other CRN functions.
All the communication modules are built using Python and C ++ in
the GNU Radio environment. In addition, we have implemented
the machine learning modules using Python on the host level of
GNU Radio. Thus our CRN testbed serves as a platform for
implementing the advanced CRN protocols and machine learning
algorithms.

(2) TL-based spectrum handoff: RL is used when the node is new to
the network and cannot find an expert node. In our testbed, we use
the Q-learning as the RL scheme to perform spectrum handoff due
to its ability to explore and exploit the best actions for each state.
To enhance the process of adaptation to the radio environment and
to achieve optimal condition faster, we have implemented TL
algorithm. There are several TL approaches, such as the inverse
RL, apprenticeship learning, etc. We have used a typical Docitive
learning model, where the optimal Q-table is transferred from the
expert node to the learning node.

The rest of this paper is organized as follows: The related work is
summarized in Section II. The RL and TL based spectrum handoff
schemes are explained in Sections III and IV, respectively. The CRN
testbed set up and design challenges are described in Section V. The
experimental results are presented in Section VI, followed by the
conclusions in Section VII.

2. Related work

Several CRN testbeds using USRP and GNU Radio, with spectrum
sensing, dynamic spectrum access and interference management
functions, have been discussed in (Crohas, 2008; Patcha, 2011; Aftab
and Mufti, 2011). A CRN testbed with spectrum sensing function was
implemented in (Ke-Yu and Chen, 2006). The authors also extended
their work to observe the burst errors in OFDM using Markov traffic
models, and implemented a 4-node CRN network to observe the effect
of interference on the delay performance. A comparative study of
different spectrum sensing techniques using the USRP and GNU Radio
was performed in (Galindo-Serrano et al., 2010). Researchers at UC
Berkeley (Mishra et al., 2005) designed a CRN testbed by using BEE2
and a multi-FPGA emulation engine, to verify different sensing
processes at the physical layer in real-time system. They developed
two CRN testbeds with 8 WARP nodes and 11 USRP nodes. A large-
scale CRN testbed with distributed spectrum sensing was developed in
(Qiu et al., 2012). The researchers at Virginia Tech (Newman et al.,
2009) developed the VT-CORNET testbed, for the development, testing
and evaluation of several cognitive radio applications.

However, only a few testbeds have used the machine learning
algorithms in CRN. Authors in (Anil et al., 2014) developed machine
learning plugins (i.e., linear logistic regression classifiers), by using the
GNU Radio companion and Python coding. A Q-learning based
interference management in cognitive femtocell networks was devel-
oped in (Elsayed and Mohamed, 2015) using the USRP and GNU
Radio. A practical signal detection and classification scheme in GNU
Radio was developed in (O’shea et al., 2007) by using the artificial
neural networks (ANN). The fusion of signal detection and classifica-
tion algorithms. A Q-learning based channel allocation platform was
proposed in (Hosey et al., 2009) for a 4-node CRN, where each node
acts individually without collaborating with other nodes, to avoid the
overhead introduced in cooperative spectrum access. In (Ren et al.,
2010), a Q-learning based spectrum management system for a
Markovian modeled, large-scale multi-agent network was implemen-
ted, and the success rate of packet transmission was improved.

Most of the existing testbeds have used the RL based models. Ours
is the first testbed to implement a transfer learning algorithm to
enhance the learning speed of the network, which can tune its strategy
to the dynamic variations of the channel.

3. Reinforcement learning for spectrum handoff

The RL (Sutton and Barto, 1998) is a prominent unsupervised
learning schemes, which can enable a node to learn autonomously in
CRN environment (Bkassiny et al., 2013; Sunderland, 2010). The RL is
a special case of the Markov decision process (MDP), which can be
stated as a tuple (S, A, T, R). Here S corresponds to the finite set of
states for the node; A is the finite set of actions available for a node in
each state; T defines the transition probability, (sj|si, a), from state si to
state sj, as a result of action a ∈ A; R denotes the reward, R(s, a),
observed when action, a ∈ A is performed while in state, s ∈ S. After a
series of actions, a ∈ A for state, s ∈ S, the system reaches an optimal
condition by building an optimal policy π(s,a), which defines the
probability of taking an action a in state s.

In our testbed, the tuple (S, A, T, R) is defined as follows:
States, S: When occupying a channel at iteration t, the node

observes the state as ξ ϕ{ , }t t . Here, ξt denotes the channel condition
(in terms PER) and ϕt denotes the channel status (idle or busy).

Action, A: The actions considered for spectrum handoff are: (1) Stay
and transmit in the same channel; (2) Perform spectrum handoff to
another vacant channel upon interruption from PU, or when channel
condition deteriorates.

Reward, R is defined as the immediate reward incurred for the
multimedia transmission. When the channel condition is good and the
action taken is transmission (a1), we assign the reward of 10. When
channel condition is bad and action taken is spectrum handoff (a2), the
reward is 5. For any other combination of state and action the reward is
−5, which indicates that the action was not desired in the observed
state.

Transition probability, T cannot be determined since the radio
environment is dynamic.

We have adopted the Q-learning based reinforcement learning. The
Q-learning algorithm estimates the Q-values,Q s a(,), for the joint state-
action pairs s a(,). The Q-table determines how good it is for a given
agent to perform a certain action under a given state. The one-step Q-
table update equation is defined as,

Q s a Q s a α R γmaxQs a Q s a(,) ← (,) + [+ , − (,]t t t t t t t t+1 +1 (1)

where s ,t a r, andt t are the state, action, and reward, respectively, at the
t th iteration of the learning process. Here, γ∈(0,1) is the discount factor
that maximizes the total expected rewards by controlling the influence
of previous reward on current action; α0 ≤ ≤ 1 is the learning rate
defining how much of the newly acquired information can be used for
strengthening the Q-value so that it attains the optimal value, Q*. All
the state-action pairs need to be updated continuously to achieve the

K. A.M. et al. Journal of Network and Computer Applications 106 (2018) 68–77

69

Download English Version:

https://daneshyari.com/en/article/6884822

Download Persian Version:

https://daneshyari.com/article/6884822

Daneshyari.com

https://daneshyari.com/en/article/6884822
https://daneshyari.com/article/6884822
https://daneshyari.com

