Journal of Network and Computer Applications 69 (2016) 1-13

Journal of Network and Computer Applications e

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

NETWORKE
COMPUTER
APPLICATIONS

N AA

Two-phase load balancing of In-Memory Key-Value Storages using

@ CrossMark

Network Functions Virtualization (NFV)

Alex ER. Trajano, Marcial P. Fernandez *

Universidade Estadual do Ceard (UECE), Av. Silas Munguba, 1700 Fortaleza, Ceard, Brazil

ARTICLE INFO

ABSTRACT

Article history:

Received 14 June 2015
Received in revised form

8 March 2016

Accepted 30 April 2016
Available online 3 May 2016

Keywords:

Software Defined Networks (SDN)
In-Memory Key-Value Storage (IMKVS)
Network Function Virtualization (NFV)

Social networks and other clouding applications should require fast responses from datacenter's infra-
structure. One of the techniques that have been widely used for achieving such requirement is the
employment of In-Memory Key-Value Storage (IMKVS) as caching mechanisms in order to improve
overall user experience. Memcached and Redis are applications that use IMKVS approach. Commonly
IMKVS systems use Consistent Hashing to decide where to store an object, which may cause network
load imbalance due to its simplistic approach. Furthermore, these systems work only at the application
layer, so network conditions are not considered to distribute user's accesses. This paper proposes a new
cache architecture based on a two-phase load balancing to improve IMKVS performance, which has
adopted a Network Function Virtualization (NFV) architecture to manage the load balancing mechanism.
The proposal was evaluated in the Mininet and shows an improvement of 23% on the load of the caching
servers and 5% on the load of the network compared to Consistent Hashing, which results in better

resource usage and better user experience.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The growing popularity and complexity of social networks and
cloud applications require robust datacenters that handle a mas-
sive amount of data. Facebook, for instance, has a deployment
scenario where a front-end web server is responsible for deliver-
ing requested content to users through Hypertext Transfer Proto-
col (HTTP). These servers must handle the requests and fetch data
from different caches, databases and back-end servers in order to
render the requested web page. It has been reported that a single
HTTP page request required 88 cache lookups (consuming 648 KB),
35 database lookups (consuming 25.6 KB) and 392 back-end re-
mote calls (consuming 257 KB), taking just a few seconds to
completely load the page on the user's screen (Farrington and
Andreyev, 2013).

In order to support the storage and the processing of large
amounts of data, many cloud applications have adopted a simple
but effective caching infrastructure that relies on In-Memory Key-
Value Storage (IMKVS). These simple storages are able to provide
fast access to any type of data that can be mapped by a key. Its data
in-memory placement helps to avoid slow and expensive access to
persistent storages on hard disk. Thus, IMKVS is often used to store

* Corresponding author.
E-mail addresses: alex.ferreira@uece.br (A.F.R. Trajano),
marcial.fernandez@uece.br (M.P. Fernandez).

http://dx.doi.org/10.1016/j.jnca.2016.04.024
1084-8045/© 2016 Elsevier Ltd. All rights reserved.

and supply information that is cheaper to cache than to re-obtain,
such as commonly accessed database queries or complex compu-
tations results. Several IMKVS cache implementations have been
developed and deployed in large-scale cloud services, including
Dynamo at Amazon (DeCandia et al., 2007); Redis at GitHub, Digg,
and Blizzard (Redis, 2015); Memcached at Facebook, Zynga, and
Twitter (Fitzpatrick, 2004); and Voldemort at LinkedIn (Sumbaly
et al., 2012). Facebook has reported that there are tens of thou-
sands Memcached instances operating on their datacenters
(Nishtala et al., 2013).

These simple applications are basically Hash Maps that store
either binary or text contents mapped by a unique key, usually a
String of variable length, and they can be part of a huge caching
layer designed to participate in applications' architectures in a
distributed and independent way. In other words, each one of
these IMKVS instances does not know about the existence of other
IMKVS instances, forcing their client's applications to manage all
issues of data partitioning and load balancing.

Most of Redis' (Redis, 2015) and Memcached's (Fitzpatrick,
2004) Application Programming Interface (API) clients use a
technique proposed by Karger et al. (1997), called Consistent
Hashing (CH). It consists in distributing the keys uniformly among
the servers, as well preventing that neither server's addition nor
removal causes a great impact on the keys' distribution. CH has
been used successfully in several kinds of applications, like caching
(Nishtala et al., 2013) and storage (Lakshman and Malik, 2010).
Although CH is a very efficient technique, it is, basically, a special


www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.04.024
http://dx.doi.org/10.1016/j.jnca.2016.04.024
http://dx.doi.org/10.1016/j.jnca.2016.04.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.024&domain=pdf
mailto:alex.ferreira@uece.br
mailto:marcial.fernandez@uece.br
http://dx.doi.org/10.1016/j.jnca.2016.04.024

2 A.ER. Trajano, M.P. Fernandez / Journal of Network and Computer Applications 69 (2016) 1-13

hash function that uses a key and a set of servers to select where to
store the data. However, it may incur load imbalance in a pro-
duction network, causing hot spots, since it does not consider any
environmental aspects nor object's characteristics, like size, link
congestion or object's popularity.

Moreover, in datacenter environment, it is necessary for some
technique to perform network and server load balancing, either by
application layer algorithms or network orchestration. In fact, over
the last few years, it has been common to find specialized hard-
ware appliances or applications capable of performing traffic load
balance of specific types of service. Nevertheless, the load balan-
cing task should not be coupled to specialized infrastructure items,
since it should be an embedded feature of the network itself in
order to ensure maximum performance. In-network load balan-
cing is a way of providing more flexibility and near optimal per-
formance. Besides, there is a wide set of Internet services that can
be boosted using an in-network load balancing technique, which
opens the opportunity for developing generic solutions focused on
the adherence to current and future services at no cost.

Over the last few years, Network Functions Virtualization (NFV)
(Guerzoni et al., 2012) has been becoming one of the most pro-
mising study areas for developing modern computer network
technologies. NFV poses a novel way to develop network services,
by using software and virtualization aiming the replacement of
proprietary hardware appliances that run network functions, like
Domain Name Service (DNS), Network Address Translation (NAT),
Intrusion Detection System (IDS), caching, etc. In NFV, these ser-
vices, called Virtualized Network Function (VNFs), are im-
plemented through software and deployed in Virtual Machine
(VMs), allowing new and efficient ways of network deploying. It
may permit us to customize and manage such services, enabling a
tremendous cost saving and more agility to serve the daily chan-
ges that computing network is susceptible.

Simultaneously with NFV, another networking approach that
has been gaining popularity is the Software-Defined Network
(SDN) (McKeown). SDN allows network management by creating
an abstraction of the lower-level functionalities of the networking,
by separating the control plane (decision making) from the data
plane (forwarding). SDN is often confused with OpenFlow
(McKeown et al., 2008) beeing the most popular and promising
SDN technology. OpenFlow, beyond have the data and control
planes separated, have a centralized architecture that simplifies
the development of different kinds of network services, which
consists in creating a unique programmable controller that can be
deployed to a commodity server, maintaining SSL channels to all
switches within the network, programming all aspects of packet
forwarding of the network. Although SDN and NFV have many
common aspects, both are neither competitors nor do they con-
flict. When both are used together, the whole network tends to
benefit from it, since it has the best aspects of data and control
plane separation coexisting with the virtualization power, allow-
ing a more efficient control of the network. SDN contributes to
better traffic orchestration while NFV focuses on service delivery.

This work aims to propose a novel VNF that will be responsible
for load balancing IMKVS requests, focusing on the datacenter
environmental characteristics. This new VNF is going to consider
various network's and servers' features in order to minimize load
from both datacenter network and servers, providing high scal-
ability, better resource usage and replication mechanisms to alle-
viate load generated by popular objects within the caching layer.
In addition to that, a generic OpenFlow-based load balancing will
be proposed to avoid creation of bottlenecks into the network,
serving as a front-end broker for the VNF. Both OpenFlow-based
load balancing (First-Phase) and the cache redirector (Second-
Phase) compose the proposed Two-Phase Load Balancer.

This article is an extended version of the paper presented in

The Twentieth IEEE Symposium on Computers and Communica-
tions (ISCC 2015) (Trajano and Fernandez, 2015). Comparing to the
original conference paper, this one shows a deeper theoretical
formulation, more details in the proposal include more evaluation
analysis to validate the proposal.

The rest of the paper is structured as follows. In Section 2, we
present some related work about the load balancing of IMKVS.
Section 3 introduces the concepts. In Sections 4-6 we present the
Two-Phase Load Balancer architecture. Section 7 gives some ex-
perimental results and in Section 8 we conclude the paper and
present some future works.

2. Related work

Li and Pan (2013) proposed an OpenFlow-based load balancer
for Fat-Tree networks that supports multipath forwarding. Their
proposal aims to recursively find the current best path from a
source to a destination, load balancing the network by enabling
the use of alternate paths at runtime, minimizing network con-
gestion. Their algorithm works only on networks that operate on
the Fat-Tree topology and use network metrics for choosing the
optimal path.

Wang et al. (2011) proposed an interesting load balancing ap-
proach that aims to proactively load balance traffic from clients to
servers by slicing the IP address space into trees that isolates a set
of clients to a set of servers. The work uses the concept of server
weighting, which defines a fixed portion of the clients to a server
on the network. To do so, it is proposed the extensive use of
wildcards, which may reduce forwarding performance and create
management issues, as can be seen in Lopes Alcantara Batista et al.
(2014). Furthermore, the proposed solution requires that in certain
conditions (network topology changes or server weight updates);
a part of the network traffic passes through the controller, which
could cause serious scalability problems that may lead the net-
work controller to collapse. Network metrics is not considered.

The work from Koerner and Kao proposes an architecture to
enable in-network load balancing of multiple services using
OpenFlow (Lopes Alcantara Koerner and Kao, 2012). Their proposal
relies on a set of SDN controllers on top of a FlowVisor instance
(Sherwood et al., 2012), where each controller is responsible for
load balancing the traffic of a specific service. The authors have
focused on the architecture, so there is no information about
particular service implementation, while the experiment does not
fit real-world scenarios. The idea of using a set of controllers to
handle exact services might be interesting in some specific cases,
but has the drawback of not permitting multiple services to be
handled by a single controller, which is the most common situa-
tion of SDN deployment.

Handigol et al. (2009) present Plug-n-Serve, a module residing
within an OpenFlow controller that is capable of performing load
balancing over unstructured networks, aiming to minimize aver-
age response time of HTTP servers. Plug-n-Serve load balance
HTTP requests by gathering metrics about CPU consumption and
network congestion on the network links, which makes its load
balancing algorithm to select the appropriate server to direct
requests, while controlling the path taken by packets on the
network.

De Cesaris et al. (2014) proposed Network-Assisted Lookups
(NAL), a method to do rapid load balance of key-value storages
through the existing IP infrastructure. The proposed solution
consists in assigning multiple IP addresses to each server of the
caching layer, being each IP address mapped to a bucket of objects.
The NAL Controller is responsible for collecting the load of the
buckets in order to notice performance degradation of servers.
Since the controller recognizes that a bucket is an issue, through



Download English Version:

https://daneshyari.com/en/article/6884948

Download Persian Version:

https://daneshyari.com/article/6884948

Daneshyari.com


https://daneshyari.com/en/article/6884948
https://daneshyari.com/article/6884948
https://daneshyari.com/

