
A model-driven approach for engineering trust and reputation
into software services

Francisco Moyano n, Carmen Fernandez-Gago, Javier Lopez
Network, Information and Computer Security Lab, University of Malaga, 29071 Malaga, Spain

a r t i c l e i n f o

Article history:
Received 21 May 2015
Received in revised form
3 March 2016
Accepted 16 April 2016
Available online 27 April 2016

Keywords:
Trust
Reputation
Model-driven Engineering
Self-adaptation

a b s t r a c t

The ever-increasing complex, dynamic and distributed nature of current systems demands model-driven
techniques that allow working with abstractions and self-adaptive software in order to cope with un-
foreseeable changes. Models@run.time is a promising model-driven approach that supports the runtime
adaptation of distributed, heterogeneous systems. Yet, frameworks that accommodate this paradigm
have limited support to address security concerns, hindering their usage in real scenarios. We address
this challenge by enhancing models@run.time with the notions of trust and reputation. Trust improves
decision-making processes under risk and uncertainty and constitutes a distributed and flexible me-
chanism that does not entail heavyweight administration. This paper presents a trust and reputation
framework that is integrated into a distributed component-model that implements the models@run.time
paradigm, thus allowing the system to include trust in their reasoning process. The framework is illu-
strated in a chat application by implementing several state-of-the-art trust and reputation models. We
show that the framework entails negligible computational overhead and that it requires a minimal
amount of work for developers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Two important changes are coming to the Information and
Communication Technology (ICT) world. On the one hand, the
service-oriented vision enables on-the-fly improvements upon the
functionality available to users. Applications are more dynamic
and call for rapid adaptation strategies in order to meet new re-
quirements and to respond to their changing environment. On the
other hand, the boundaries between physical and virtual worlds
are vanishing with the emergence of the Internet of Things (IoT),
where sensors and actuators are embedded in daily life objects
and are linked through networks capable of producing vast
amount of data. The aforementioned reasons blur boundaries be-
tween design and runtime (Ghezzi, 2011) as they prevent de-
signers from envisioning all possible circumstances that might
appear during the execution of an application.

The widespread adoption of these systems requires addressing
three main concerns: complexity, dynamicity and security. The
software engineering community is developing methods for ad-
dressing the first two concerns. In particular, model-driven en-
gineering tames the complexity of systems by working with high-

level models of them (Schmidt). Models@run.time keeps abstract
representations of running systems in order to reason about
changes and drive dynamic reconfigurations (Blair et al., 2009),
which tackle dynamicity.

One way to address security in these systems is by not taking
for granted trust relationships among users, components, and
system environments. These relationships must be explicitly de-
clared, monitored and changed according to the system evolution.
The contribution of this paper is the design and implementation of
a trust and reputation development framework, together with its
integration into a platform for self-adaptive, distributed compo-
nent-based systems. The advantage of this integration is that re-
configuration decisions can be reasoned in terms of trust re-
lationships and reputation information. As a result of such in-
tegration, developers can rely on a development framework that
allows them to build highly dynamic, self-adaptive and trust-
aware systems.

A remarkable issue about trust and reputation models today is
that they often present high coupling with the application context,
as they are designed as ad hoc mechanisms that are plugged into
existing applications, which in turn limits their reusability (Farmer
and Glass, 2010). Therefore, one of the goals of our approach is
allowing developers to implement different types of trust models.
We achieve this by identifying high level concepts that form trust
and reputation metamodels, and which abstract away from con-
crete instances. Then, developers can use these concepts as

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2016.04.018
1084-8045/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: moyano@lcc.uma.es (F. Moyano),

mcgago@lcc.uma.es (C. Fernandez-Gago), jlm@lcc.uma.es (J. Lopez).

Journal of Network and Computer Applications 69 (2016) 134–151

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.04.018
http://dx.doi.org/10.1016/j.jnca.2016.04.018
http://dx.doi.org/10.1016/j.jnca.2016.04.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.04.018&domain=pdf
mailto:moyano@lcc.uma.es
mailto:mcgago@lcc.uma.es
mailto:jlm@lcc.uma.es
http://dx.doi.org/10.1016/j.jnca.2016.04.018


building blocks for their trust and reputation models.
The work presented here is an extension over our previous

work (Moyano et al., 2013). The extensions include an im-
plementation, considerations of reputation, and validation. This is
done in two steps: first, we present a trust and reputation fra-
mework that allows developers implement a broad range of
models; second, as we implement this framework on top of a self-
adaptive platform, developers can use the output of the models in
order to reconfigure the system at runtime.

The paper is structured as follows. Section 2 presents some
works that are related to ours. An introduction to a models@run.
time platform called Kevoree is given in Section 3. A brief dis-
cussion on trust and reputation concepts is presented in Section 4,
whereas Section 5 describes the implementation of the frame-
work. Section 6 presents our approach for allowing trust- and
reputation-based reconfigurations of the system. A case study that
illustrates the use of the framework in a chat application is de-
scribed in Section 7. Section 8 yields experimental results as for
the overhead and the amount of work that the development of
such application requires, as well as the limitations of the frame-
work and technical challenges that we faced. Finally, Section 9
concludes the paper by presenting some research challenges and
lines for future work.

2. Related work

There is an increasing interest in considering notions of trust in
self-adapting systems in order to leverage reconfiguration deci-
sions, especially in the areas of multi-agent, component-based and
service-oriented systems. In some cases, trust is considered in its
hard variant, where trust is seen as an aggregation of quality of
service (QoS) and security properties. In other works, the soft
variant of trust is used, which means that social aspects such as
reputation or preferences are taken into account (Rasmusson and
Jansson, 1996).

As mentioned earlier, trust is seen as a powerful tool to lever-
age decision-making even with partial information. This fact is
especially remarked in STRATUS (Robertson et al., 2013), a set of
technologies that aim at predicting and responding to complex
cyber attacks. When it detects an attack, the platform switches to
back-up components and finds alternative pathways of commu-
nication. The trust model that supports this platform (Robertson
and Laddaga, 2012) is based on conditional trust, that is, trust in
certain capabilities of a system. The authors argue that experience-
based trust is not useful because configurations in cyber attacks
change frequently, laying statistical analysis useless. They propose
ways to make the most out of the little information available, and
introduce concepts like contagion that allows formalizing trust in

a host based on the distance from an infected host. Even when the
underlying idea is the same, they define a model, whereas in our
work the model is only defined by the developer. Also, our fra-
mework is more general purpose and includes the option of im-
plementing reputation models, whereas STRATUS is more specia-
lized in cyber defence and does not tackle reputation.

A classical scenario of application of trust is multi-agent sys-
tems (Ramchurn et al., 2005), where Vu et al. (2011) propose trust-
based mechanisms as a way to self-organize the agents in case of
deceitful information. In particular, the trust value of an agent
towards another one is an aggregate of direct experiences and
testimonies. The use of artificial intelligence, and concretely, ma-
chine learning together with trust in order to adapt the behavior of
agents is proposed in the work by Klejnowski et al. (2010). They
propose an architecture where there is an observer component
that gathers information about the agent and presents it to the
controller in two views: a long-term and a short-term one. The
controller finds a suitable behavior according to this information.
Given that new unexpected situations might arise, agents must be
able to try out new strategies and learn which ones provided the
best results.

These works differ from ours in several aspects. They are
framed within multi-agent systems, which means that each agent
takes their own reconfiguration decisions. In our case, the system
as a whole acts as a controller of its evolution. We do not consider
machine learning techniques and we tackle both, trust and re-
putation. The most important difference is that whereas these
works propose their own models, our framework is model-ag-
nostic, meaning that it delegates to developers the responsibility
of implementing trust or reputation models.

Given the highly open and distributed nature of service-or-
iented environments, the traditional use of trust is for either
protecting providers from potentially malicious clients or for
shielding clients against potentially malicious providers (e.g. pro-
viders that publish a higher Quality of Service (QoS) than offered).
As an example of the first situation, Conner et al. (2009) present a
feedback-based reputation framework to help service providers to
determine trust in incoming requests from clients. As an example
of the second approach, Crapanzano et al. (2010) propose a hier-
archical architecture for SOA where there is a so-called super node
overlay that acts as a trusting authority when a service consumer
looks for a service provider.

In both, component- and service-oriented systems, an im-
portant research area is determining the level of trust, or the
trustworthiness, of the system as a whole, or of individual sub-
systems (i.e. services or components). In case that the trust value is
too low, a reconfiguration takes place in order to try to improve it.
In this direction, Hanen and Bourcier (2012) present a runtime
architecture that allows a service-oriented system to meet a

Fig. 1. Kevoree architectural elements.

F. Moyano et al. / Journal of Network and Computer Applications 69 (2016) 134–151 135



Download English Version:

https://daneshyari.com/en/article/6884972

Download Persian Version:

https://daneshyari.com/article/6884972

Daneshyari.com

https://daneshyari.com/en/article/6884972
https://daneshyari.com/article/6884972
https://daneshyari.com

