Journal of Network and Computer Applications 59 (2016) 109-116

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

NETWORKE
COMPUTER
APPLICATIONS

Termination analysis with recursive calling graphs

Teng Long *"* Wenhui Zhang "

—_—

@ CrossMark

2 School of Information Engineering, China University of Geosciences (Beijing), 29#, Xueyuan Road, Haidian District, Beijing, PR China
b State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, 4#, South Fourth Street of Zhongguancun, Haidian District,

Beijing, PR China

ARTICLE INFO ABSTRACT

Available online 16 July 2015

Keywords:

Termination analysis

Green software programs
Size-change termination principle

As one of the significant aspects for green software systems, termination analysis is related to the
optimization of the resource utilization. The approach for size-change termination principle was first
proposed by Lee, Jones and Ben-Amram in 2001, which is an effective method for automatic termination
analysis. According to its abstracted constructs (size-change graphs), the principle ignores the condition and
return values for function call. In this paper, we devise a new construct including the ignoring features to

extend the set of programs that are size-change terminating in real life. The main contribution of our paper is
twofold: firstly, it supports the analysis of functions in which the returned values are relevant to termination.
Secondly, it gains more accuracy for oscillating value change in termination analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of information and communication
technologies, it gives rise to the increasing popularity of electronic
devices, raising serious environment concerns for the society.
Trying to address these issues, there is a critical need to consider
greenness in the whole life cycle of software systems.

A guarantee of right behaviors of software systems is signifi-
cant, which can lighten greatly network loads and avoid wasting
resources. Termination property is one of the properties that
describe the right behaviors of the software system. Moreover,
the termination analysis (Kuwahara et al., 2014; Heizmann et al.,
2010; Codish et al., 2010, 2012; Farzan et al., 2015) is a much-
studied topic. In real-life software systems, methods to derive
termination properties from recursive and mutually recursive
functions are useful in program analysis.

The size-change termination (SCT) principle which was pre-
sented in Lee et al. (2001) is simple but surprisingly rich enough to
capture the progress of many real-life programs. Size-change
graphs (SCG) are essential auxiliary constructs to support SCT.
More importantly, the relations between input and output vari-
ables of a function call are restricted to the forms as x>y’ or
x>y'.! It operates over the variables whose “ size” is well-founded
based on the function call's structure in the program. Once a
combination of the relations has been found, termination follows
if one variable at least is guaranteed to decrease. The termination

* Corresponding author.
E-mail addresses: longteng@cugb.edu.cn (T. Long), zwh@ios.ac.cn (W. Zhang).
! The names for input and output variables could be different.

http://dx.doi.org/10.1016/j.jnca.2015.06.019
1084-8045/© 2015 Elsevier Ltd. All rights reserved.

analysis is unrelated to the order of the variables which is decided
in SCT. Therefore, it is one of the approaches which are success-
fully applied in a large class of programs for termination analysis.
There are some attempts (Ben-Amram and Genaim, 2014, 2013;
Ben-Amram, 2009; Cook et al., 2013) to relax the well-founded
restriction. However, the downside is that the SCG can only
express the transitions involving decreases in well-founded partial
orders. In fact, there are still many situations with oscillating value
change, in which the traditional SCT approach is not applicable.

We present a technique for deriving program termination proper-
ties from size-change information, by constructing a recursive callings
graph (RCG, defined in Section 3) and a set of extended size-change
graphs (ESCGs, defined in Section 3) for the program. The former one
describes the relation to function and function return based on
locations in the program. The latter ones approximate the oscillating
size change at each location in the program. The strong connected
components in the RCG are an approximation of all sequences of
function calls that could be idempotent” Qur paper presents an
important technique which could help stramline the application of
the green software programs. The main contribution of our paper with
recursive calling graphs is twofold: Firstly, it supports the analysis that
can handle recursive and mutually recursive functions in which return
values are relevant to termination. Secondly, the approach extends the
set of programs that are size-change terminating.

The paper is organized as follows: in Section 2, we introduce the
syntax of the language used in this paper and the definitions that are
related to size-change termination principle. We propose the definitions

2 Idempotent graphs describe the self-recursive function calls.

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.06.019
http://dx.doi.org/10.1016/j.jnca.2015.06.019
http://dx.doi.org/10.1016/j.jnca.2015.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.019&domain=pdf
mailto:longteng@cugb.edu.cn
mailto:zwh@ios.ac.cn
http://dx.doi.org/10.1016/j.jnca.2015.06.019

110 T. Long, W. Zhang / Journal of Network and Computer Applications 59 (2016) 109-116

of auxiliary constructs and do termination analysis in Section 3. Section 3
outlines how to record the returned values, and how to do a more
precise analysis. An algorithm is proposed in Section 4. Section 5
illustrates the application of the approach on an example with self-
recursive function callings. Related work is discussed in Section 6. We
end with concluding remarks in Section 7.

2. Preliminaries

In this section, we will list the syntax of the language used in
this paper and the definitions in size-change termination principle
in Lee et al. (2001).

2.1. Language

The language used in this paper is a simple first-order call-by-
value functional language, defined in Table 1. A variable can
represent any expression. Similarly, a constant can represent any
expression. An expression can be a conditional choice based on the
equational theory (if..then..else). Functions are used to represent
definitions about these variables. So does the expressions.

2.2. Size-change termination principle

Definition 1 (Size-change graph (SCG)). Suppose functions f and
g are defined in program P. A size-change graph G : f—»g for Pis a
set of labeled arcs x>y or x>y where x e Variables(f),
y e Variables(g).

Functions f and g (the caller and callee) are respectively called
the source and the target of G. G is an abstraction of a call
transition - from f to g. The arcs in the graph are as abstract
transitions.

Definition 2 (Closure). The closure of a set of size-change graphs
is the smallest set cl(g) such that

® gcdg) ,
® IfG :f—f and G, : f —f" are in cl(g), then Gy; G, e cl(g). Gy; G, :
f—f with arc set E defined below: E = {x >z| 3y, wx>y%z or
w > = = = w
x->ySzwe{>, =)} U{x>5z|3yx>y>z)) where x—y and
y% 7z are respectively arcs of G; and G,.

Size-change graph G is idempotent if G; G = G. A self-recursive
function call can be expressed by an idempotent size-change
graph.

Theorem 1 (Size-change termination principle). Program P is SCT
terminating iff every idempotent G in cl(g) has an arc z5z.

The SCT is described in Lee et al. (2001) as follows: A program
terminates on all inputs if every infinite call sequence (following program
control flow) would cause an infinite descent in some data values.

Table 1
The language syntax.

€ Var (Variables)

op € Prim (Primitive operators)
f € FName (Function names)
c € Const (Constants)
e € Exp (Expressions)

e:: if ey then e else e;

|X|cleq op e;

Ifer,....en)
d € Def (Definitions)

d:: f(xq,....,xp)=¢

A closure set of size-change graphs (sets of abstract transitions)
is used to express the set of all the possible call sequences. All of
the idempotent ones in closure set stand for the infinite call
sequences. If a descent arc “>" can be found, it satisfies the

“infinite descent” in the principle.

3. Termination analysis

The termination analysis for programs with nested self-
recursive functions over integer domain is complex, because of
the complicated “size change” situation. The possible cases are as
follows:

1. The value of variables in the program declines all the time.

2. The value of variables in the program increases in each
function call.

3. The value of variables in the program is oscillating, such as in
the McCarthy's 91 function.

There are only two arc forms in size-change graphs, such as
x>y or x>y, therefore, it can deal with the first case. In our
work, additional variables and a new auxiliary construct are used
to address the latter two cases.

3.1. Additional variables

In this work, additional variables consist of counter variables
and returned variables. The former one is used to record the
number of times for some function call/return, while the latter one
is used to record the returned value.

The returned values are always ignored in available approaches,
so functions in which the returned values are relevant to termina-
tion cannot be analyzed correctly. Adding extra variables in the
program is the first step to extend the range of programs for
termination analysis.

A set of additional variables V.44 consists of a set of returned
variables and a set of counter variables. After augmenting the
program with additional variables, the set of variables V in the
program will augmented as V U Vygq.

3.2. Definitions of auxiliary constructs

We construct the recursive calling graph (RCG) to describe the
control flow for the augmented program which can express not
only the function calls but the function returns. The transitions in a
RCG are described as ESCGs which are extended by transforming
the arc types from x>y or x>y to x—§>y’ where e 7 is the
changed value in the transition.

The changes of values in ESCGs have to be satisfied in size
reducing. In other words, the corresponding code cannot be
revisited, and the recursive calling graph cannot result in any
infinite cycle.

3.2.1. Extended size-change graph

Definition 3 (Extended size-change graph (ESCG)). Suppose func-
tions f and g are defined in program P. Location a is the place
where the value of variables function g changed in program P. An
extended size-change graph B, : f —»g for P is a set of labeled arcs
x—5>y where x e Variables(f), y € Variables(g),5 € Z is the changed
value for function calls.

Suppose functions f, g are defined in the program. An ESCG B, € B,
By : f—g for the program is a set of labeled arcs x> y where
& € Z,x e Variables(f), y e Variables(g). Functions f and g are respectively
called the source and the target of B(source(B) = f, target(B) = g).

Download English Version:

https://daneshyari.com/en/article/6884992

Download Persian Version:

https://daneshyari.com/article/6884992

Daneshyari.com

https://daneshyari.com/en/article/6884992
https://daneshyari.com/article/6884992
https://daneshyari.com

