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a b s t r a c t

Named Data Networking (NDN) is a promising network architecture being considered as a possible
replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion
when the number of data packets that reach one or various routers in a certain period of time is so high
than its queue gets overflowed. To address this problem many congestion control protocols have been
proposed in the literature which, however, they are highly sensitive to their control parameters as well
as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive
Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to control
congestion traffics before they start impacting the network performance. In the first phase – adaptive
training – we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of
particle swarm optimization and genetic algorithm to predict the source of congestion together with the
amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based
control system to make a proactive decision based on the outcomes of first phase in each router per
interface to control and/or prevent packet drop well enough in advance. Extensive simulations and
results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two
previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization
(retrying alternative paths) in bottleneck links to mitigate congestion traffics.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Information-Centric Networking (ICN) (Jacobson et al., 2009;
Ahlgren et al., 2012; Dannewitz et al., 2013) has been proposed as a
solution for a viable and vital replacement for the current IP-based
Internet due to the fundamental limitations of the Internet in
supporting today's content-oriented services (Conti et al., 2013; Lee
and Nakao, 2013; Rossini and Rossi, 2013; Li et al., 2012). Named Data
Networking (NDN) (Jiang and Bi, 2013) is a prominent example and
ongoing research effort of ICN design. The main goal of NDN is to
support the dissemination of named content rather than the current
host-centric (end-to-end) delivery of content to a named host. In NDN,
a consumer asks for a Content (Data) by sending an Interest request
using name prefix (content identifier) instead of today's IP prefix
(content location). An Interest packet is routed towards the location of
the content's origin where it has been published. Any router (inter-
mediate node) on the way checks its cache for matching copies of the
requested content. The requested content is returned by any node that

holds a copy of the content in its cache. On the way back, all the
intermediate nodes store a copy of the content in their caches to
satisfy subsequent users interested in that content (i.e., in-network
caching). Congestion takes place in NDN routers when the number of
arrival data packets is higher than the queue's capacity which causes
an overflow in the routers' buffer (Rozhnova and Fdida, 2012; Saino
et al., 2013; Karami and Guerrero-Zapata, 2015a). When this happens
a high data packet loss and increase in the end-to-end delay occur
affecting negatively on the performance, stability and robustness of
the network (Qian et al., 2008; Lestas et al., 2007). This leads to under-
utilization of the available resources and degradation of throughput
and quality of service (Xu and Sun, 2014; Li et al., 2014).

This difficulty has recently motivated researchers to explore ways
of congestion control in NDN. Some of the relevant contributions are
(Rozhnova and Fdida, 2012; Saino et al., 2013; Fu et al., 2012; Saucez
et al., 2012; Carofiglio et al., 2013; Xia et al., 2013; Yi et al., 2013). The
main weak points of the proposed methods are: a too high sensitivity
to their control parameters as well as the inability to predict
congestion traffic well enough in advance. This will often bring unfair
bandwidth sharing, network instability, packet loss, additional delay
and so on (Barabas et al., 2011a; Bonald et al., 2000). The first goal of
any method against congestion can be the early detection (ideally long
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before the problematic traffic builds up) of its existence. If the
congestion problem can be recognized in advance, changing network
parameters can possibly prevent such costly network breakdowns.
Network traffic prediction plays an important role in guaranteeing
quality of service in computer networks (Cortez et al., 2012). The
prediction of network traffic parameters is feasible due to a strong
correlation between chronologically ordered values (Barabas et al.,
2011a). Their predictability is mainly determined by their statistical
characteristics including self-similarity, multi-scalarity, long-range
dependence (LRD) and a highly non-linear nature (Dharmadhikari
and Gavade, 2010). Prediction algorithms can be embedded into
network communications to improve the global performance of the
network by anomaly detection, proactive congestion detection (or
avoidance), and allow a better quality of service by a balanced
utilization of the resources (Cortez et al., 2012; Li et al., 2009;
Alarcon-Aquino and Barria, 2006). Contributions from the areas of
operational research, statistics and computer science have lead to
forecasting methods. In particular, the field of Time Series Forecasting
(TSF) deals with the prediction of a chronologically ordered values
(Makridakis et al., 1997; Claveria and Torra, 2014). The goal of TSF is to
model a complex system as a black-box in order to predict the
systems behavior based on the historical data (Barabas et al., 2011a;
Cortez et al., 2006).

In this paper, we develop ACCPndn (Adaptive Congestion
Control Protocol in Named Data Networking) which is a new
congestion control protocol with learning capacities. The ACCPndn
focuses on two phases for congestion control before building up in
NDN. The first phase – adaptive training – learns from the past
breakdowns to how to detect the problem beforehand. This phase
allows to identify the source of the congestion together with the
amount of congestion. This phase uses time-lagged feedforward
neural network (TLFN) approach. The TLFN adopts a multilayer
perceptron ANN (Artificial Neural Network) and time series fore-
casting (TSF) (Peralta Donate et al., 2011; Gomes and Ludermir,
2013). The major advantages of neural networks in time series
forecasting are their flexible nonlinear modeling capability that
there is no need to specify a particular model form and high data
error tolerance (Ren et al., 2014; Khashei et al., 2008). A Back-
Propagation is a most popular NN algorithm (BPNN) to determine
and adjust network parameters, weights and biases. Despite the
advantages of BPNN, it has some drawbacks that the most
important one being their poor trainability. It might fall to local
minima and cause overfitting and failure of the network training
(Das et al., 2014; Wong et al., 2010). There is a recent trend to train
BPNN with bio-inspired optimization algorithms for different
applications (Yogi et al., 2010; Malviya and Pratihar, 2011; Lee
and Lee, 2012). In this paper, in order to improve the performance
of BPNN, a new combined algorithm namely particle swarm
optimization (PSO) and genetic algorithm (GA) is presented to
optimize the weights and the biases of network, and to prevent
trapping in local minima. The results show that our proposed
combination of PSO/GA with TLFN (TLFNþPSO-GA) performs
better than the GA/PSO, PSO and GA in terms of the applied
performance criteria.

When the source(s) and the amount of congestion are identified,
they are sent to the second phase for congestion control before
building up. The second phase – fuzzy avoidance – performs a fuzzy
decision-making approach to proactively respond to network conges-
tion rather than simply wait for a congested queue to overflow and
the tail drop all subsequently arriving data packets. The application of
fuzzy decision-making techniques to the problem of congestion
control is suitable due to the difficulties in obtaining a precise
mathematical (or a formal analytical) model, while some intuitive
understanding of congestion control is available (Chrysostomou and
Pitsillides, 2003; Chrysostomou et al., 2009). Its use allows to regulate
effectively the incoming Interest packets in each routers’ interface.

The main objective of the proposed protocol is to enable a
stable equilibrium and satisfy some basic requirements which are
characterized by the utilization of multiple paths and few packet
drops. The second objective is to present a scalable and fast
convergence properties with respect to varying bandwidths, traffic
patterns, and number of users at different times utilizing the
network. The evaluation through simulations shows that ACCPndn
can quickly and effectively respond against congestion problems in
a timely manner and performs successfully even in the large
networks as compared to two recent congestion control mechan-
isms namely NACK (Yi et al., 2013) and HoBHIS (Rozhnova and
Fdida, 2012) in terms of the applied performance metrics.

The rest of the paper is organized as follows. Section 2 describes
the background materials of NDN. Section 3 gives an overview of the
time series forecasting approach. Sections 4 Sections 5 describe the
PSO and the GA, respectively. In Section 6, multilayer perceptron
neural network is described in detail. Section 7 provides a overview of
fuzzy set theory. The proposed method (ACCPndn) is completely
presented in Section 8. Section 9 presents the evaluation setup.
The results of simulation are also presented in Section 10. Section 11
discusses the results of this paper. Finally, Section 12 draws
conclusions.

2. Named Data Networking (NDN)

NDN communication protocol is receiver-driven and data-centric.
All communication in NDN is performed using two distinct types of
packets: Interest and Data. Both types of packets carry a name,
which uniquely identifies a piece of data that can be carried in one
data packet (Afanasyev et al., 2013; Ran et al., 2013). Data names in
NDN are hierarchically structured, e.g., eight fragment of a youtube
video would be named /youtube/videos/A45tR7Kg5/8. In addi-
tion to the data name, each Interest packet also carries a random
nonce generated by the consumer. A router checks both the name
and nonce of each received Interest packet. If a newly arrived Interest
packet carrying the same name as a previously received Interest
packet from a different consumer, or a previously forwarded Interest
looped back, the router drops the Interest packet. Therefore Interest
packets cannot loop. Each NDN router maintains three major data
structures (Karami and Guerrero-Zapata, 2015b,c):

1. The Pending Interest Table (PIT) holds all not yet satisfied
Interest packets that were sent upstream towards potential
data sources. Each PIT entry holds one or multiple incoming
physical interfaces and their corresponding Interest packets.

2. The Forwarding Information Base (FIB) forwards Interest pack-
ets to one or multiple physical network interfaces based on the
forwarding strategies. The strategy module makes forwarding
decisions for each Interest packet.

3. The Content Store (CS) or buffer memory temporarily buffers
data packets for data retrieval efficiency.

When a NDN router receives an Interest packet, it first checks its CS
(cache). If there is no copy of the requested content, it looks up its PIT
table. If the same name is already in the PIT and the arrival interface of
the present Interest is already in the set of arrival interface of the
corresponding PIT entry, the Interest is discarded. If a PIT entry for the
same name exists, the router updates the PIT entry by adding a new
arrival interface to the set. The Interest is not forwarded further.
Otherwise, the router creates a new PIT entry and forwards the
present Interest using its FIB. When an Interest packet is satisfied by
the content's origin where it was published, on the way back, all the
intermediate nodes store a copy of content in their caches to answer
to probable same Interest requests from subsequent requester
(Muscariello et al., 2011; Karami and Guerrero-Zapata, 2015b).
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