
Distributed and scalable embedding of virtual networks

Michael Till Beck a,n, Andreas Fischer b, Juan Felipe Botero c, Claudia Linnhoff-Popien a,
Hermann de Meer b

a Ludwig-Maximilians-Universität München, Germany
b Universität Passau, Germany
c Universidad de Antioquia, Colombia

a r t i c l e i n f o

Article history:
Received 8 December 2014
Received in revised form
15 May 2015
Accepted 1 June 2015
Available online 8 July 2015

Keywords:
Virtual Network Embedding
Distributed algorithm
Framework

a b s t r a c t

Network virtualization is widely regarded as a key technology for the Future Internet, enabling the
deployment of new network protocols without changing dissimilar hardware devices. This leads to the
problem of mapping virtual demands to physical resources, known as Virtual Network Embedding
(VNE). Current VNE algorithms do not scale with respect to the substrate network size. Therefore, these
algorithms are not applicable in large-scale scenarios where virtual networks have to be embedded in a
timely manner.

This paper discusses DPVNE, a Distributed and Generic VNE framework: It runs cost-oriented
centralized embedding algorithms in a distributed way, spreading workload across the substrate
network instead of concentrating it on one single node (as centralized algorithms do). Several state-
of-the-art algorithms were evaluated running inside the DPVNE framework. Results show that DPVNE
leads to runtime improvements in large-scale scenarios and embedding results are kept comparable.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Virtualization enables infrastructure providers to rent network
resources to multiple tenants, ensuring that shared resources are
isolated and, thus, do not interfere with each other. Instantiation of
virtual infrastructures has to take care of not only the computing
requirements of virtual machines, but also the communication
requirements between them. For example, a cloud-based web
infrastructure may consist of a load balancer connected to a
number of web servers, which are themselves connected to
database servers. Neglecting the communication requirements
may lead to starvation of the traffic between the respective virtual
machines, and thus violation of Service Level Agreements.

Virtual Network Embedding (VNE) provides the mechanisms to
optimally assign both communication and computation resources
according to constraints dictated by virtual infrastructures. Each
virtual resource has to be assigned to one or several substrate
resources. Substrate resources, however, are limited in capacity,
restraining the number of virtual resources that can be hosted by a
certain substrate resource. This fact immediately raises two ques-
tions: First, can a given set of virtual network requests be mapped
to a given substrate network? Second, what is the optimal way to

map a virtual network to a substrate network, i.e., which substrate
resources should be used to host the virtual resources? In this
context, optimality can be defined, e.g., as minimizing the amount
of substrate resources that are allocated to the virtual networks
(commonly known as embedding cost), leaving space for future
requests that can be embedded onto the substrate network later
on. Optimal VNE is NP�hard (Fischer et al., 2013). Unfortunately,
current VNE algorithms do not scale in large-scale networks due to
the fact that solving the VNE problem is a CPU-intense task. Most
VNE algorithms perform this task in one centralized node, con-
centrating computational workload on this node. Even for net-
works with 50 nodes, many conventional VNE algorithms take
several minutes to perform a single embedding. For larger network
topologies, the situation gets worse quickly.

Thus, in scenarios where the embedding has to be performed in
a timely manner, runtime of these algorithms quickly becomes a
critical factor. Such scenarios can be found in, e.g., shared cloud
infrastructures where frequently arriving virtual network requests
can put serious stress on the system. Furthermore, in testbed
environments like Future Internet testbeds, various network con-
figurations are evaluated and, thus, the embedding of virtual
networks needs to be solved frequently.

As a remedy to this situation, this paper discusses a generic and
distributed VNE framework, DPVNE, presented first at IEEE ICC
2013 (Beck et al., 2013). The framework is capable of executing
VNE algorithms in a distributed manner by partitioning the
substrate network into several smaller network parts. To increase

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.06.012
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: michael.beck@ifi.lmu.de (M.T. Beck),

andreas.fischer@uni-passau.de (A. Fischer), juanf.botero@udea.edu.co (J.F. Botero),
linnhoff@ifi.lmu.de (C. Linnhoff-Popien), demeer@uni-passau.de (H. de Meer).

Journal of Network and Computer Applications 56 (2015) 124–136

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.06.012
http://dx.doi.org/10.1016/j.jnca.2015.06.012
http://dx.doi.org/10.1016/j.jnca.2015.06.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.06.012&domain=pdf
mailto:michael.beck@ifi.lmu.de
mailto:andreas.fischer@uni-passau.de
mailto:juanf.botero@udea.edu.co
mailto:linnhoff@ifi.lmu.de
mailto:demeer@uni-passau.de
http://dx.doi.org/10.1016/j.jnca.2015.06.012


scalability, DPVNE aims to spread computational load to multiple
nodes instead of concentrating it on one single embedder node.
The paper presented in ICC introduced the general concept of
DPVNE and analyzed first results in the context of small network
topologies (100 nodes). In contrast, this paper elaborates on the
generality and scalability of the DPVNE framework:

1. It is shown that the DPVNE framework is generic: Several cost-
optimizing VNE algorithms are evaluated and run within the
DPVNE framework. Previously, DPVNE was evaluated with only
one VNE algorithm.

2. Second, this paper discusses the communication protocol for
the substrate nodes performing the VNE and analyzes message
overhead.

3. Third, DPVNE is analyzed in the context of large substrate
network topologies and it is shown that DPVNE scales very well
in these scenarios: DPVNE leads to significant runtime
improvements, while embedding results still remain compar-
able to original results.

2. Background and related work

This section shortly explains the VNE problem and describes
properties of centralized and distributed embedding approaches.

2.1. The VNE problem

VNE is performed by assigning appropriate resources in the
substrate network for each virtual resource. To this end, node and
link mapping has to be performed. In the node mapping stage,
each virtual node is assigned to an available substrate node.
Moreover, a single substrate node can host several virtual nodes.
In the link mapping stage, a virtual link between virtual nodes v

and w is mapped to a set of consecutive substrate links (substrate
path) connecting the substrate hosts of v and w. An individual
substrate link may then be part of one or several virtual links. This
is depicted in Fig. 1: two Virtual Network Requests (VNRs) with
three nodes each are embedded on a substrate network with four
nodes and five links. The VNE problem becomes NP�hard when
substrate nodes and links have finite resources which are reserved
by virtual node and links (in particular node mapping is directly
linked to the well-known bin-packing problem). In the figure finite
resources are indicated with node and link weights.

It can be seen that a substrate node is capable of hosting several
virtual nodes as long as resources are not exceeded. A virtual link

can either directly correspond to a physical link. This is the case for
VNR1. If no direct link exists or all resources on a direct link are
spent, it can also span a path in the substrate network (cf. the right
link of VNR2). Such a situation introduces a “hidden hop” on the
virtual link (Botero et al., 2012a). One can also see that there may
be multiple solutions to the problem. In the given example, the
node at the top which is part of VNR2 might also be mapped to the
right node in the substrate network, thus reducing the load on the
top node in the substrate network.

For the sake of brevity, the notation presented in Fischer et al.
(2013) will be used here. In particular, N will denote the set
substrate nodes, whereas L will denote the set of substrate links.
The substrate network is then represented by the tuple ðN; LÞ of
substrate nodes and links. Likewise, ðNi; LiÞ will represent the i-th
VNR (VNRi) with its respective virtual nodes Ni and virtual links Li.

2.2. Centralized VNE algorithms

Due to theNP�hardness of the VNE problem, exact approaches
are not scalable and are only applicable in small network scenarios
(Houidi et al., 2011; Botero et al., 2012b; Botero and Hesselbach,
2013). Therefore, current solutions are based on heuristics (Zhu
and Ammar, 2006; Yu et al., 2008; Butt et al., 2010; Fajjari et al.,
2011a; Rahman et al., 2010; Cheng et al., 2011; Botero et al., 2013)
or metaheuristics (Fajjari et al., 2011b; Zhang et al., 2011, 2013;
Cheng et al., 2012). Many VNE algorithms try to maximize the
number of embedded VNRs by reducing embedding costs
(Chowdhury et al., 2009; Lischka and Karl, 2009; Fajjari et al.,
2011b; Cheng et al., 2011).

All those previous approaches share the following character-
istics: they rely on a centralized embedder node to perform the VNE
and, therefore, VNE is performed by only one embedder node.
Being centralized, the embedder node benefits from full knowl-
edge of the substrate network to compute a near-optimal VNE
result without any message overhead. However, they share the
following shortcomings:

� Poor scalability: Current centralized VNE algorithms do not scale
for large substrate network topologies. Since the complexity of the
VNE problem increases with the network size, runtime of current
VNE algorithms increases significantly with increasing network
size. One notable approach that aims to improve scalability is
presented in Fuerst et al. (2013): Authors evaluate the performance
of an algorithm that pre-partitions virtual networks in order to
reduce problem size. In contrast to DPVNE, this approach is a
centralized approach, whereas DPVNE aims at distributing compu-
tational workload between multiple nodes. Furthermore, DPVNE
hierarchically partitions the substrate network in order to increase
scalability of VNE algorithms in large-scale substrate network
topologies, whereas the approach presented in Fuerst et al.
(2013) aims to reduce complexity of embedding large-scale virtual
network topologies.

� Delay to embed simultaneous requests: When multiple VNRs
arrive simultaneously, the requests are attended sequentially
by the centralized embedder node, resulting in high utilization
of the embedder node. Thus, this introduces queuing delay. The
time for a single embedding is on the order of seconds to
minutes (depending on the size of the VNR and the substrate
network). For highly dynamic environments this might be
unsuitable. In contrast, distributed approaches aim to spread
computational load among multiple embedder nodes.

Besides centralized VNE algorithms, some distributed algo-
rithms have been proposed so far, which will be discussed in the
following subsection.

3

8
1 2

5

3

VNR 2

7

9

9

68

5
8

3

4

Virtual nodes

Physical nodes

Node resource

3 Link resource

Virtual Network Request

1
5
4

4
3

VNR 1

9

Fig. 1. VNE of two VNRs onto one substrate network.

M.T. Beck et al. / Journal of Network and Computer Applications 56 (2015) 124–136 125



Download English Version:

https://daneshyari.com/en/article/6885048

Download Persian Version:

https://daneshyari.com/article/6885048

Daneshyari.com

https://daneshyari.com/en/article/6885048
https://daneshyari.com/article/6885048
https://daneshyari.com

