
Design and evaluation of mobile offloading system
for web-centric devices$

Sehoon Park a, Qichen Chen b, Hyuck Han a,n, Heon Y. Yeomb

a Samsung Electronics, Gyeonggi-do, South Korea
b School of Computer Science and Engineering, Seoul National University, Seoul, South Korea

a r t i c l e i n f o

Article history:
Received 7 January 2013
Received in revised form
7 June 2013
Accepted 25 August 2013
Available online 13 September 2013

Keywords:
Offloading
Mobile device
JavaScript
Power saving
Platform-independent

a b s t r a c t

Increasingly, smartphones are becoming one of the most popular mobile devices in the personal
computing environment. As the need for a variety of mobile applications increases, the target mobile
platform is a primary concern for mobile application developers. To reduce design complexity for
different platforms and enhance the compatibility of applications on various mobile OSes, a JavaScript-
based web environment became a main target framework for smartphone applications. Two particular
characteristics of a smartphone are restricted power supply and low-end hardware resources, compared
to high-end servers. Computing-intensive and rich graphics-based applications in a smartphone may
fully utilize the CPU and consume a large amount of the battery power accordingly.

In this paper, we propose a platform-independent mobile offloading system, which is a delegated
system for a web centric devices environment. Our offloading architecture uses a built-in proxy system
that splits the original JavaScript-based application codes into the following two parts: a lightweight
code for the mobile client and a computationally heavy code that runs on the server system. We adopt
one of the web applications utilizing a combinatory search for our case study. Our evaluation shows that
our mobile offloading system reduces the response time of the application running in the web browser
and enables a high workload application to run on relatively low-end mobile devices. In addition, this
method reduces power consumption of the device. Therefore, this web-based offloading architecture
creates a new mobile computing environment and supports various OS platforms of mobile clients.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of mobile devices has changed many aspects of
the current personal computing environment. Various mobile
platforms are rapidly introduced to meet our computing needs.
The increasing speed of mobile networks, including W-CDMA, LTE,
and IEEE 802.11n, accelerates the performance of mobile devices,
and it also minimizes the overhead of the client–server model in
the network environment. Mobile applications are becoming more
elaborate in order to support complex applications, such as games
that incorporate augmented reality and high-level mathematical
computations. However, along with the complicated and rich
graphic-intensive characteristic, these applications are still restricted
to the hardware resources in the mobile computing environment.

As a solution to this issue, several research projects (Chun et al.,
2011; Cuervo et al., 2010) propose offloading systems. However,

their offloading functions rely on operating systems of mobile
devices, and this may lead to non-trivial development overhead in
terms of changes or upgrades of operating or runtime systems
(detailed in Section 2). Moreover, there are many operating systems,
such as Android (Google), iOS (Apple), RIM (BlackBerry), Symbian
(Nokia), and Bada (Samsung), and this diversity causes major
concern to mobile web application developers. Thus, mobile service
providers or mobile manufacturers need platform-independent
offloading systems. To enhance the compatibility of the mobile
platform, many applications are integrated into a web browser,
which is a common environment among the different mobile OS
platforms. As a next-generation web standard, JavaScript has been
represented as a universal platform language for mobile applica-
tions that run on web browsers. The emergence of HTML5 also
derives from the need for a common platform for the mobile device,
which mainly uses JavaScript-based platforms. We propose a
platform-independent JavaScript offloading system to minimize
the limitation of hardware resources, and to maximize the compat-
ibility of various mobile OS platforms.

Heavy computational models (Hill et al., 2010; Lee et al., 2009)
or gaming applications based on JavaScript require high CPU
utilization, which shortens the battery lifetime. These applications
usually require high-level hardware specifications and increase

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jnca.2013.08.006

☆A preliminary version of this paper was presented as a short paper at IEEE
CCNC 2013.

n Corresponding author. Tel.: þ82 31 325 3863.
E-mail addresses: tsh.park@samsung.com (S. Park),

charliecqc@dcslab.snu.ac.kr (Q. Chen), hhyuck@dcslab.snu.ac.kr,
hyuck.han@samsung.com (H. Han), yeom@snu.ac.kr (H.Y. Yeom).

Journal of Network and Computer Applications 40 (2014) 105–115

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2013.08.006
http://dx.doi.org/10.1016/j.jnca.2013.08.006
http://dx.doi.org/10.1016/j.jnca.2013.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2013.08.006&domain=pdf
mailto:tsh.park@samsung.com
mailto:charliecqc@dcslab.snu.ac.kr
mailto:hhyuck@dcslab.snu.ac.kr
mailto:hyuck.han@samsung.com
mailto:yeom@snu.ac.kr
http://dx.doi.org/10.1016/j.jnca.2013.08.006


the cost of the devices, which is challenging for low-end devices.
Low-cost smartphones are becoming popular in emerging mar-
kets, especially in developing countries. These devices reduce the
cost and extend the battery lifetime. However, the main problem
with them is that their capacity is limited to utilizing complicated
web resources, such as a rich UI or highly computational JavaScript
applications. To address the issue of the limited resources of low-
end devices, we propose a new architecture for application off-
loading, in which a mobile client out-sources JavaScript functions
to an offloading server. With our offloading technique, the low-
end devices are able to support complicated UI and high computa-
tional web resources.

The basic idea behind our offloading system is to exploit the
separation of heavy computation functions specified by the pro-
grammer's annotation. The computational parts are moved to the
server as callee functions, while the client receives the lightweight
caller functions. Our offloading methodology runs on the applica-
tion (browser) and (source) code level; thus it is not limited to the
platforms or runtime of the mobile OS. This offloading system
reduces the level of CPU utilization and energy consumption of
mobile devices, since the main computational works are offloaded
to the server side. This client–server model may require a data
traffic over the network as exchanging parameters between callee
and caller functions, however the total amount of network traffic
received by the client is not as big as the non-offloading method.
This is because that the offloading functions will be excluded from
the original source codes, and also the caller function will share
only a small amount of parameters with a callee in our offloading
model. The client device sends a few parameters for the computa-
tional function to the offloading server in our system, and receives
a result only. Thus, the overhead is relatively small as compared to
the other system which usually needs whole parts of functions or
clones of the original source codes. Again, our offloading can easily
detect the offloading functions by the annotation from a program-
mer, and it leads the fast separation of a caller and callee. There-
fore, our annotation-based offloading system increases the
performance of mobile clients. Also our platform-independent
offloading engine based on the application level enlarges the
compatibility of the various mobile platforms.

The key contribution of our paper is a new offloading metho-
dology that increases the performance of mobile devices by
reducing CPU utilization and saving energy. To evaluate our
methodology, we first implement our offloading system, and we
perform experiments by using a widely known JavaScript applica-
tion from the Internet.

The rest of the paper is organized as follows: Section 2 reviews
the background and related work on the offloading systems for
mobile environments. Section 3 describes the design and imple-
mentation of our mobile offloading system. Section 4 presents a
case study of our offloading system based on a casual game
application in JavaScript. Section 5 presents an evaluation of the
performance using a casual game in our mobile architecture, and
Section 6 concludes our work.

2. Background and related work

There are several major distinguished research projects on the
issues of computational power and the cost of CPU utilization in
mobile computing environments. One is the CloneCloud (Chun
et al., 2011) project, which uses nearby computers or data centers
to speed up smartphone applications and reduces CPU utilization
on mobile devices by cloning the entire image of a mobile device
via cloud computing. This method allows mobile devices to be
more power-efficient and reliable, but it requires pre-processing
on the client side, which can increase the cost of mobile devices.

It can also lead to excessive network traffic from the cloud
network to the device. Issues pertaining to security cannot be
neglected either, as this architecture clones the complete image of
a mobile system, include the user's private files, in third-party
cloud storage over the network.

Another project is MAUI (Cuervo et al., 2010), which provides a
fine-grained code offload based on the annotations by a program-
mer to maximize energy savings. This code determines at the run-
time level which methods should be remotely executed as driven
by an optimization engine under current connectivity constraints
of the mobile device. However, experimental results have shown
that this approach works only on Microsoft Windows platforms.
Moreover, the level of the code offloading decision is based on the .
NET framework. Therefore, this method is non-scalable and is not
commonly adoptable on various mobile computing OS platforms.
However, our approach is reliable, concise, and platform-indepen-
dent, as it operates on JavaScript platform, which runs at the
browser level.

Recently, LG U-plus, one of Korea's largest telecom companies,
has launched a cloud platform (LG Uþ , 2012) for games on which
users can access games that can be played on smartphones and
personal computers on the cloud. The platform will store games
provided by developers and publishers for customers who do not
need to download them, but simply log in and play via its
streaming services. This approach still requires a massive amount
of network storage, and it is somewhat limited in its ability to be
widely adapted on all mobile applications compared to our
system. Figure 1 summarizes the various offloading architectures
and emphasizes our offloading approach as very effective in terms
of platform compatibility and design simplicity.

In automatic detection schemes for offloading systems such as
Diaconescu et al. (2005), Xian et al. (2007), Chun et al. (2011), it is
very important to design partitioning and offloading schemes for
applications since offloading incurs network overhead from trans-
mission delay and cost. Static partitioning such as Diaconescu et al.
(2005) is not suitable if there are frequent bandwidth fluctuations
in the mobile communication. Dynamic partitioning such as Xian
et al. (2007), Chun et al. (2011) results in high overhead due to
continuously determining partition. In Niu et al. (2013), authors
proposed the Weighted Object Relational Graphs (WORG) to
improve static partitioning and avoid high overhead of dynamic
partitioning. In this study we focus on platform-independent
offloading systems rather than partitioning strategies. Our system
employs the application-level partition that is based on program-
mers' annotations to build the platform-independent offloading
system. Therefore, if mobile web standards deals with QoS
information such as bandwidth, it is possible to build platform-
independent offloading systems with bandwidth-adaptive parti-
tioning to maximize benefits of offloading. We remain this as
future work.

In Chen et al. (2004), the authors suggest several guidelines to
determine whether a function or component is considered for
remote execution. The followings are key rules suggested: (i) A
component that accesses local I/O devices including storage
devices, a camera, and a GPS device should not be offloaded.

Fig. 1. Our system approach.

S. Park et al. / Journal of Network and Computer Applications 40 (2014) 105–115106



Download English Version:

https://daneshyari.com/en/article/6885121

Download Persian Version:

https://daneshyari.com/article/6885121

Daneshyari.com

https://daneshyari.com/en/article/6885121
https://daneshyari.com/article/6885121
https://daneshyari.com

