
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Verification of network end-to-end latencies for adaptive ethernet-based
cyber-physical systems

Martin Manderscheid, Gereon Weiss⁎, Rudi Knorr
Fraunhofer Institute for Embedded Systems and Communication Technologies ESK Hansastrasse 32, Munich, Germany

A R T I C L E I N F O

Keywords:
Cyber-physical systems
Embedded systems
Runtime variability
Network performance analysis
Network performance-verification
Real-time system architecture

A B S T R A C T

As Cyber-Physical Systems (CPS) are evolving towards flexible and smart systems, their dependable commu-
nication becomes a decisive factor. In order to still guarantee a predictive and real-time behavior, verifying the
network performance of such adaptive systems is vital. Therefore, the performance-verification has to consider
the runtime variability while scaling for larger number of applications and networks in CPS. We introduce a
novel performance-verification approach with integrated variability enabling the analysis of adaptive Ethernet-
based CPS. It incorporates a formal model capturing all relevant characteristics for deriving safe communication
bounds. Its soundness has been evaluated in an extensive automotive case study and several changing test setups
targeting scalability. The results show that this integrated variability approach is superior to a common static
analysis and previously utilized heuristic. In direct comparison it outperforms static analysis by up to 95 percent
within the evaluated automotive system. Moreover, the results show that it scales well and provides a profound
basis for analyzing larger adaptive networked systems.

1. Introduction

Today’s cyber-physical systems (CPS) enable a broad range of ap-
plications based on software and electronics. To that end, CPS are in-
tegrating more and more actuators and sensors with increasing com-
munication demands, such as high definition cameras or laser scanners
in the automotive domain. Thus, the needed network bandwidth rises
to a level which can only be satisfied by high bandwidth communica-
tion technologies, such as Ethernet [1–3]. While Ethernet provides high
bandwidth to applications, the planning of such interactive networks
can no longer rely on static traffic assumptions. CPS have to adapt
dynamically to various contexts (cf. [4]). Hence, a static network
planning cannot adequately address these flexibility concerns anymore.
Modern automobiles for example, may activate different combinations
of driver assistance functions, depending on the driving context. For
instance, while backing into a parking space the rear view camera
function and the park distance control functions are simultaneously
activated. During automated highway driving, the activation of the
navigation system and the cruise control would rather make sense.

CPS are often produced at high volume while production costs are
tried to be kept at a low level. This in turn, has a great impact on the
development process. Here, one tries to predict the required hardware
resources as exact as possible. At the same time, CPS involve high de-
pendability demands and their functionalities - or also so-called features

- must in most cases meet time-critical requirements. For example,
when pictures recorded through a rear view camera are sent to the
head-unit of an automobile, they have to be displayed within a defined
time interval. The fulfillment of those requirements by the network
architecture design is verified within the network performance-verifica-
tion. The objective of this step inside the design process of CPS is to
meet the requirements of all applications with the lowest possible
amount of hardware resources. At this process step, engineers are facing
the challenge of mastering the complexity of a vast amount of runtime
configurations and an exact network performance-verification for a
cost-efficient and dependable network architecture at the same time. In
this work, we contribute to this challenge by introducing:

• An improved scalable heuristic model for the network performance-
verification of dynamic CPS, which does neither rely on manual
runtime configuration definitions nor does it imply artificial re-
strictions on network topology or medium access methods,

• a corresponding method enabling the calculation of safe bounds for
the minimum runtime configuration switching transition delay, and

• an automotive case study representing a typical use-case of real-time
CPS proving the applicability of the presented approach.

In the following Section 2, we introduce related approaches and
background to the introduced network performance-verification. As a

https://doi.org/10.1016/j.sysarc.2018.05.004
Received 16 September 2017; Accepted 10 May 2018

⁎ Corresponding author.
E-mail addresses: martin.manderscheid@esk.fraunhofer.de (M. Manderscheid), gereon.weiss@esk.fraunhofer.de (G. Weiss), rudi.knorr@esk.fraunhofer.de (R. Knorr).

Journal of Systems Architecture 88 (2018) 23–32

1383-7621/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
https://doi.org/10.1016/j.sysarc.2018.05.004
https://doi.org/10.1016/j.sysarc.2018.05.004
mailto:martin.manderscheid@esk.fraunhofer.de
mailto:gereon.weiss@esk.fraunhofer.de
mailto:rudi.knorr@esk.fraunhofer.de
https://doi.org/10.1016/j.sysarc.2018.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2018.05.004&domain=pdf


running example, we provide a case study of an automotive video
system in Section 3. In the subsequent Section 4, we present our ap-
proach for the network performance-verification with integrated
variability for dependable and adaptive CPS. Its validity, applicability
and scalability is evaluated within the automotive case study and syn-
thetic test-setups in Section 5. Afterwards, we conclude our work in
Section 6.

2. Background and related work

Looking a decade or more back, network performance-verification
[5–7] of distributed embedded systems was mainly covering static
scenarios. That is, the analytic model covered one static software con-
figuration consisting of a number of tasks competing for shared re-
sources provided by the system architecture. Since then, distributed
embedded systems are becoming more and more dynamic and open,
thus, evolving to CPS. This step offered a multitude of possibilities,
which made the performance-verification simultaneously very complex.
Since CPS are often multi-functional and dynamic, design engineers are
facing an immense number of features ending in an exploding number
of possible runtime configurations. System designs of CPS often host
safety related features and demand high dependability. Thus, worst-
case bounds are generally required. This fact makes it difficult to find
approximations, since all runtime configurations have to be covered by
the performance-verification. To solve this, different kinds of ap-
proaches have been proposed.

One popular approach is to abstract from some dynamics of the
system for verifying the system’s performance in a rather but not
completely static way [8–13]. The idea is, to manually group a set of
system-wide software runtime configurations called modes [14] or
scenarios [8], each configuration addressing a different context or si-
tuation during the runtime of the system. The performance of every
runtime configuration has to be verified individually. Depending on the
protocol for the configuration change, transitions have to be verified,
too (cf. [15]). While those approaches extended the possibilities and
allowed more resource-efficient system designs, their limitations are
evident. The manual nature of describing runtime configurations limits
the designable variability of the systems and thereby the resource-ef-
ficiency of the design.

Another branch of approaches (cf. [13,16]) tries to avoid the ab-
stractions resulting from system-wide modes. Here, each software
component owns a set of modes and thus, those approaches allow more
dynamisms than system-wide mode approaches. However, for the per-
formance-verification, all runtime configurations have to be covered.
Since the overall runtime configurations are obtained by the cross
product of the sets of component-modes, this results in a combinatorial
explosion and makes it too complex finding an exact solution. In the
approaches presented in [16] and [13], this has been solved through
restrictions concerning the network topology and media access me-
chanisms. Both approaches rely on time division multiple access
(TDMA). While these solutions help to reduce the complexity of net-
work performance-verification, they entail significant drawbacks con-
cerning resource-efficiency and bandwidth availability.

Additional works have been published [17–21] that are mainly
based on confining the analyzed dynamics to local components. The
presented approaches rely on interfaces between classical performance
evaluation frameworks such as Real-Time Calculus [6] and more ex-
pressive concepts such as Timed Automata [22], Event Count Automata
[23] or Lustre [24]. Through this hybrid approach, the combinatorial
explosion can be avoided by the price of neglecting system-wide dy-
namics. Especially for the case of network performance-verification,
this is obviously a significant disadvantage.

In summary, the concepts of system-wide modes, component-wide
modes, and hybrid performance-verification imply significant draw-
backs and leave a gap open that is worth spending a detailed look at.
Targeting this opportunity, we will present an approach integrating

variability concerns within the network performance-verification of
CPS.

3. Automotive video system

Automobiles and their complex E/E architecture are prominent
example systems evolving towards adaptive CPS with real-time re-
quirements. Therewith, the in-vehicle video architecture plays an im-
portant part. It consists of several time-critical video functions, which
all transfer data from different sources to the head-unit display, which
visualizes the data. The following features are generally included in
such a system:

• Human Machine Interface (HMI) feature generates a configuration
menu video stream, which is displayed on the head-unit.

• Navigation feature calculates driving routes and generates a visua-
lization for the driver.

• Storage Movie feature transfers video content from an entertainment
electronic control unit (ECU) to the head-unit.

• Bluray Movie feature transfers video content from a Bluray Player to
the head-unit.

• Online Stream feature transfers video content from an Antenna ECU
to the head-unit.

• Top-View feature aggregates four video streams from four cameras
mounted at different positions of the vehicle. Thereof, a merged
video stream is generated which shows the vehicle from a bird’s eye
view.

• Nightvision feature sends a video stream from a nightvision camera
to the head-unit.

• Side-View feature displays two video streams recorded from cameras
at the vehicle’s mudguards, thus, providing the driver a view into
hardly visible areas, such as the case in crossroads.

All of these features have requirements on the maximum end-to-end
transmission delay (cf. Table 1) and must be integrated in an adequate
network architecture. We will introduce our variability-aware network
performance-verification approach by further detailing this example in
the following.

Table 1
Data dependencies and end-to-end delay requirements of the case study.

Source- and target-
component

Avg.
bandw.
[Mbits]

Max. size
appl.-
frame
[octet]

Max.
Burst
[octet]

Lmax

[octet]
Max.
delay
[ms]

SV Merge,
SV Right CAM

6.1848 25,770 25,770 1526 33

SV Merge,
SV Left CAM

6.1848 25,770 25,770 1526 33

TV Merge,
TV Right CAM

6.1848 25,770 25,770 1526 33

TV Merge,
TV Left CAM

6.1848 25,770 25,770 1526 33

TV Merge,
TV Front CAM

6.1848 25,770 25,770 1526 33

TV Merge,
TV Rear CAM

6.1848 25,770 25,770 1526 33

Head-Unit,
Nightvision

6.1848 25,770 25770 1526 33

Head-Unit,
Internet

25.7810 107,421 107,421 1526 100

Head-Unit,
HMI

164.9762 687,401 687,401 1526 100

Head-Unit,
Entertainment

164.9762 687,401 687,401 1526 100

Head-Unit,
Navigation

164.9762 687,401 687,401 1526 100

Head-Unit,
Bluray

164.9762 687,401 687,401 1526 100

M. Manderscheid et al. Journal of Systems Architecture 88 (2018) 23–32

24



Download English Version:

https://daneshyari.com/en/article/6885183

Download Persian Version:

https://daneshyari.com/article/6885183

Daneshyari.com

https://daneshyari.com/en/article/6885183
https://daneshyari.com/article/6885183
https://daneshyari.com

