
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Last level cache layout remapping for heterogeneous systems

Licheng Yu⁎,a, Tianzhou Chena, Minghui Wub, Xueqing Loua

a College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
b School of Computer & Computing Science, Zhejiang University City College, Hangzhou, Zhejiang, China

A R T I C L E I N F O

Keywords:
Memory layout
LLC
GPGPU
Heterogeneous system

A B S T R A C T

Heterogeneous systems with CPU and GPGPU sharing the last level cache (LLC) provide viability and flexibility.
However, the different programming models lead to conflicting memory layouts, which are required for best
performance of different processors. Software converting that directly accesses target layout is subject to sub-
optimal localities. Converting in GPGPU shared memory also incurs copying and synchronization overhead.

In this paper, we analyze the memory layout requirement and propose to remap the memory layout in the
shared LLC. A remap controller in LLC executes a simple program that calculates target requests from an LLC
request in the source memory space. The LLC request is thus remapped to the target memory space with the
generated requests. Consequently, all processors always access memory in their optimal data layouts. The lo-
cality is thus kept through all the private caches, and software remapping overhead is also eliminated.

The tiled-matrix multiplication is discussed as a case study and benchmarks from Polybench/GPU and
Rodinia are modified to take advantage of the LLC layout remapping. The experiment results show the average
benchmark execution time is decreased to 69%. Compared with CPU software layout converting, the CPU time is
decreased to 41%–73%.

1. Introduction

Heterogeneous systems are widely adopted from super computers to
mobile devices. Among them, general-purpose computing on graphics
processing unit (GPGPU) complements CPU with high throughput and
excellent power efficiency, which are achieved via the massive parallel
architecture. Traditionally, as a peripheral device, GPGPU is connected
to CPU through a peripheral bus such as PCI Express. The system
memory access from GPGPU incurs high latency and bus overhead, and
thus a discrete GPGPU has its private memory for high speed memory
access. Shared data must be copied between system memory and
GPGPU’s memory for collaboration. On the other hand, closely-coupled
CPU-GPGPU architecture with shared last level cache (LLC) enables
CPU to offload workload to GPGPU in fine-grained. Since the memory
underneath the LLC are also shared, data copy is eliminated.

Fig. 1 gives the targeted system with shared LLC between CPU and
GPGPU. The CPU has its private L1 cache and L2 cache. The latter
connects to the system memory through the shared LLC. The GPGPU
consists of multiple stream multiprocessors (SMs), each of which has a
private L1 data cache and a scratchpad memory. The scratchpad
memory is directly addressable and is named shared memory (SHM in
Fig. 1). All SMs are further connected to the memory system with
multiple L2 cache banks, which are shared among all SMs but are

private to the GPGPU.
A program (or kernel) on GPGPU is executed as hundreds of hard-

ware threads running simultaneously. New programming models such
as CUDA are developed to natively support GPGPU architecture.
Without loss of generality, we use CUDA’s terminology in the paper.
Threads are grouped into blocks to enable affordable inter-thread syn-
chronization inside each block. Further, threads in small groups execute
in lock-step (or single instruction multiple data, SIMD) to simplify the
control logic, and each group is a warp. A memory instruction executed
by a warp generates as many memory requests as active threads of the
warp. Memory request coalescing merges requests with a good spatial
locality into one request and is employed by GPGPU to alleviate the
high memory bandwidth requirement.

On the other hand, a conventional CPU focuses on performance of
single thread and algorithms on CPU exhibit different memory access
patterns from algorithms on GPGPU. In single thread CPU algorithms,
intra-thread memory locality is always kept in mind. For GPGPU, the
memory coalescing among threads of a warp renders inter-thread
memory locality more important for better memory performance. A
typical scenario is CPU prepares the shared data set and starts GPGPU
for further processing. For a given loop-based CPU algorithm, one
common way to implement a GPGPU algorithm is to execute one
iteration of the loop in each GPGPU thread. This causes different

https://doi.org/10.1016/j.sysarc.2018.05.002
Received 13 February 2018; Received in revised form 6 May 2018; Accepted 8 May 2018

⁎ Corresponding author.
E-mail addresses: yulicheng@zju.edu.cn (L. Yu), tzchen@zju.edu.cn (T. Chen), mhwu@zucc.edu.cn (M. Wu), xqlou@zju.edu.cn (X. Lou).

Journal of Systems Architecture 87 (2018) 49–63

Available online 16 May 2018
1383-7621/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
https://doi.org/10.1016/j.sysarc.2018.05.002
https://doi.org/10.1016/j.sysarc.2018.05.002
mailto:yulicheng@zju.edu.cn
mailto:tzchen@zju.edu.cn
mailto:mhwu@zucc.edu.cn
mailto:xqlou@zju.edu.cn
https://doi.org/10.1016/j.sysarc.2018.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2018.05.002&domain=pdf

locality requirements from algorithms on CPU that prepares the shared
data set. These mismatch requirements lead to conflict optimal memory
layouts of the shared data and result in inefficient data sharing.

A possible solution is to convert the memory layout of the shared
data set with either CPU or GPGPU. For CPU converting, it inevitably
becomes a bottleneck due to serialization. Despite that SIMD execution
such as SSE or AVX is also supported in modern CPUs, the mismatching
SIMD width between CPU and GPGPU prevents CPU from generating
the optimal target layout for GPGPU. Further, the sub-optimized layout
data also contaminate the CPU’s private caches and degrades CPU
performance.

GPGPU can convert the layout with shared memory during pro-
cessing or with a dedicated kernel before real processing. The former
method loads data into shared memory in a coalesced way and accesses
the shared memory in the algorithm’s way but incurs shared memory
management overhead. The latter usually needs high-overhead global
atomic operations and introduces extra kernel launch overhead. Since
the converting kernel expects full input data, it also makes overlap of
converting and data generation impossible.

To provide proper memory layout for efficient memory access on
both CPU and GPGPU, while mitigate the overhead of layout con-
verting, we propose the layout remapping in the LLC. A remap con-
troller is added in the LLC to generate requests in target memory space
from a request in source memory space with a remap program. Since
the converting is done during LLC access, GPGPU and CPU are free to
scheduling other threads to overlap useful work with it, and the re-
source occupation such as the shared memory in GPGPU is also low-
ered. Further, algorithms running on different processors can access the
shared data in their optimal layouts, and keep the locality along all
their private caches. Therefore, compared with the traditional software
converting, our method eliminates the extra converting work on either
CPU or GPGPU, and provides efficient memory access for both pro-
cessors.

The contributions of this paper are as follows:

• We analyze the memory access patterns of typical CPU and GPGPU
algorithms and reveal the conflict in optimal memory layout caused
by different memory locality behaviors. We also show the problems
in software layout converting.

• LLC layout remapping is proposed to convert the memory layout in
the LLC level to alleviate the problems of software layout con-
verting.

• A case study of tiled-matrix multiplication is presented to demon-
strate the proposed LLC remapping method.

• Performance and overhead of the LLC remapping is evaluated with
more benchmarks. We also compare our solution with the GPGPU
converting proposed by Sung et al. [1].

The paper is organized as follows. Section 2 gives the experiment

setup in this paper. Section 3 discusses the memory access patterns and
traditional memory layout data converting methods. Section 4 in-
troduces the layout remapping, and Section 5 presents the design and
implementation of the LLC layout remapping. Section 6 shows a case
study on tiled-matrix multiplication with the proposed method, which
is further evaluated in the experiment of Section 7. Section 8 gives the
related work. Finally, Section 9 concludes the paper.

2. Experiment methodology

Before present any experiment results, we first introduce the ex-
periment setup in this paper. Our experiment platform is based on a
cycle-accurate simulator that simulates the shared LLC system of CPU
and GPGPU. The simulator implements the CPU and memory system
with a full system simulator gem5 [2] and adds the GPGPU simulation
from GPGPU-Sim v3 [3], which mimics Nvidia Fermi architecture. We
adopt x86-64 CPU core and setup the GPGPU with Nvidia GTX480
configuration included in the GPGPU-sim. The purposed remap con-
troller is implemented along the LLC controller in the simulator. Table 1
shows the main configuration parameters.

3. Memory access patterns and motivation

3.1. Memory layout

When data structures are stored in an array, it becomes a multi-
dimension data set, which has to be rearranged in a one-dimension
layout to store in the linear memory space. When the array element is
structure instances and elements of each instance are stored con-
tinuously, the layout is named array of structure (AoS). For example,
lines 1–5 of Fig. 2 define an array aos of 100 structure instances of foo.
Meanwhile, the same structure elements from different structure in-
stances can also be stored continuously as shown in lines 7–11, where a
single structure instance soa contains arrays of its original structure’s
elements. This is named structure of array (SoA).

Since a structure array data set can be viewed as a 2D matrix, each
row of which is one structure instance, we present the matrix re-
presentation. To store in the linear memory space, a 2D matrix is usually
arranged in either row-major or column-major, corresponding to AoS and
SoA, respectively. For a matrix with m rows and n columns =×A a{ },m n i j,
where i∈ [0, m), j∈ [0, n], the row-major stores neighboring elements of
a row consecutively, row-by-row (… …− − −a a a a a{ , , , , , , }n m n0,0 0,1 0, 1 1,0 1, 1).
Correspondingly, column-major places the column elements together
(… …− − −a a a a a{ , , , , , }m m n0,0 1,0 1,0 0,1 1, 1).

SM

L2 banks

L1
· · ·

Core

L1

L2

LLC

Memory

GPGPU CPU

SHM

SM

L1

SHM

Fig. 1. System with shared LLC between CPU and GPGPU.

Table 1
Configuration parameters.

CPU Core frequency 2 GHz
Data L1 cache 64KB
L2 cache 2MB

GPGPU SMs 15
SM frequency 700 MHz
L1 cache 16KB, write-evict,

private to each SM
Shared memory 48KB,

private to each SM
NoC Butterfly
L2 cache 6 banks, 128KB each,

shared by all SMs
LLC Remap frequency 2 GHz

Remap ALUs 8
Block size 128 bytes
Associative 8 ways
Size 16MB
Hit Latency 20 ns
Replacement LRU

Memory Bandwidth 12.8GB/s
Latency 50 ns

L. Yu et al. Journal of Systems Architecture 87 (2018) 49–63

50

Download English Version:

https://daneshyari.com/en/article/6885191

Download Persian Version:

https://daneshyari.com/article/6885191

Daneshyari.com

https://daneshyari.com/en/article/6885191
https://daneshyari.com/article/6885191
https://daneshyari.com

