
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Energy aware fixed priority scheduling for real time sporadic task with task
synchronization

Yi-wen Zhang*, Cheng Wang, Jin Liu
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China

A R T I C L E I N F O

Keywords:
Sporadic task
Fixed priority
Shared resource
Energy management

A B S T R A C T

Energy management is one of the key issues in the real-time embedded systems. The slowdown method based on
the dynamic voltage scaling (DVS) and the shutdown method based on the dynamic power management (DPM)
can effectively reduce energy consumption. The previous algorithm which uses the static speed to deal with the
blocking situation is too conservative. We present a static task synchronization for sporadic tasks scheduling
(STSST) algorithm. The dynamic speed is computed to minimize energy consumption while satisfying the time
constraints in the STSST algorithm. But, the STSST algorithm assumes that each task executes with its worst case
execution time. As the actual execution time of the task is often lower than its worst case execution time. A
dynamic task synchronization for sporadic task (DTSST) algorithm which can reclaim the slack time generated
from the early completion task is proposed. It combines the DVS technique and the DPM technique to reduce
energy consumption. Furthermore, the feasibility conditions are given and proved. The experimental results
show that the DTSST algorithm can reduce energy consumption up to 20.57%∼67.66% over the STSST algo-
rithm and it consumes 43.79%∼67.66% less energy than that of the DS algorithm.

1. Introduction

Energy consumption is one of the key issues in the real-time em-
bedded systems, especially for the portable mobile systems operated
with a limited battery capacity. The development speed of battery
technique is much lower than the growth rate of system energy con-
sumption [1]. The processor is one of the major sources of energy
consumption [2]. There are two effective techniques to reduce the
processor energy consumption. One is to slowdown the processor speed
by the dynamic voltage scaling (DVS) technique [3]. The other is to
shut down the processor by dynamic power management (DPM) tech-
nique [4]. The different slowdown speeds will result in different energy
consumptions. Therefore, how to choose proper speeds is very im-
portant for minimizing energy consumption while satisfying the system
timing constraint.

In past decades, power aware scheduling algorithms for real-time
tasks in DVS-enabled system have been widely studied [3–9]. Pillai and
Shin [6] have investigated the independent periodic task energy effi-
cient scheduling problem and proposed a cycle-conserving EDF
(CCEDF) algorithm based on the task actual utilization. But it ignores
the processor static power. Chen and Kuo [7] have considered the
general power model and proposed the procrastination determination
algorithm to replace the greedy procrastination algorithm. The

procrastination determination algorithm can effectively reduce the
processor leakage current power consumption. For energy efficiency,
Zhang and Guo [8] have proposed a novel algorithm which takes the
general power model into consideration and can use the slack time
generated from the completed higher priority task and lower priority
task to reduce energy consumption. In addition, Niu and Li [9] have
proposed a fixed priority scheduling policy low power algorithm which
combines a critical strategy and shut down strategy to reduce energy
consumption.

The above researches assume that there are no dependencies be-
tween the tasks composing the considered task set. In fact, the tasks are
usually dependent due to shared resources. There are some protocols
such as priority inheritance protocol (PIP) [10], priority ceiling pro-
tocol (PCP) [10] and stack resource policy (SRP) [11] to enforce mu-
tually exclusive access to shared resources. The energy efficient sche-
duling problem for periodic tasks with non-preemptive sections has
been studied in [12]. The dual speed (DS) algorithm has been proposed
to solve this problem and it is based on the SRP protocol and the RM
scheduling policy. The task begins to execute at static low speed SL
without considering blocking time. When the task is blocked by the
lower priority task, the processor switches to the static high speed SH
which takes the blocking time into consideration. To achieve further
energy savings, Jejurikar [5] has studied the problem energy efficient

https://doi.org/10.1016/j.sysarc.2017.11.004
Received 2 November 2016; Received in revised form 7 May 2017; Accepted 17 November 2017

* Corresponding author.
E-mail addresses: zyw@hqu.edu.cn (Y.-w. Zhang), wangcheng@hqu.edu.cn (C. Wang), geneleo@hqu.edu.cn (J. Liu).

Journal of Systems Architecture 83 (2018) 12–22

Available online 21 November 2017
1383-7621/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
https://doi.org/10.1016/j.sysarc.2017.11.004
https://doi.org/10.1016/j.sysarc.2017.11.004
mailto:zyw@hqu.edu.cn
mailto:wangcheng@hqu.edu.cn
mailto:geneleo@hqu.edu.cn
https://doi.org/10.1016/j.sysarc.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.11.004&domain=pdf

scheduling of non-preemptive tasks and proposed the stack based
slowdown (SBS) algorithm, which builds upon the optimal feasibility
test for non-preemptive systems and based on the EDF scheduling
policy. The SBS algorithm can minimize the transitions to a higher
speed by computing different slowdown factors based on the blocking
task. Later, Lee et al [2] have studied the same problem and proposed a
multi-speed algorithm that exploits various speed levels depending on
specific blocking situation to minimize energy consumption. Note that,
the above researches overestimate preemption times on non-pre-
emptive tasks which result in the speed of the task higher than neces-
sary. To further reduce energy consumption, Li et al [13] have proposed
a novel individual speed algorithm (ISA) that computes one speed for
each individual task in a non-preemptive task set without jeopardizing
any task deadlines.

There are some works [14–16] discussing the task synchronization
to enforce mutually exclusive access to shared resources. Jejurikar and
Gupta [14] have proposed dual mode (DM) algorithm based on the RM
scheduling policy. The DM algorithm computes static slowdown factors
in the presence of task synchronization to minimize energy consump-
tion of the system. In addition, it introduces the frequency inheritance
which bounds the blocking time to guarantee the task deadlines. Fur-
thermore, the same problem based on EDF scheduling policy is studied
in [15]. The above task synchronization algorithm uses the maximum
blocking time to compute the processor speed. To further reduce energy
consumption, Wu [16] proposed blocking aware two-speed (BATS) al-
gorithm based on the stack resource policy to synchronization the tasks
with shared resources. The BATS algorithm borrows the idea of the DS
algorithm and it is based on the EDF scheduling policy. The BATS al-
gorithm has recomputed the high speed based on the actual blocking
time to reduce energy consumption. In addition, the BATS algorithm
first schedules tasks with the static low speed, the processor switches to
the high speed when the block occurs.

Note that the above researches focus on the dependent periodic
tasks with shared resources. Few researches focus on the dependent
sporadic tasks with shared resources. Horng et al. [17] have studied the
problem of scheduling dependent sporadic tasks with shared resources
and proposed a novel algorithm, called DVSSR. But it ignores the static
power of the processor and assumes that each task executes with its
worst case execution time and that each task will require access to at
most one resource at a time. Zhang and Guo [18] have extended this
work and have proposed an energy efficient algorithm, which reclaims
the slack time from the early completion task to reduce energy con-
sumption and takes the general power model into account. But it also
assumes that each task will require access to at most one resource at a
time, and it is based on the EDF scheduling policy.

In this paper, we focus on the dependent sporadic tasks with shared
resources model based on the fixed priority scheduling policy. We first
present a static task synchronization for sporadic tasks scheduling
(STSST) algorithm assuming that each task executes with its worst case
execution time. The dynamic speed is computed to minimize energy
consumption while satisfying the time constraints in the STSST algo-
rithm. In addition, the STSST algorithm uses the SRP protocol to en-
force mutually exclusive access to shared resources. To achieve further
energy savings, we present a dynamic task synchronization for sporadic
task (DTSST) algorithm which can reclaim the slack time generated
from the early completion task. It combines the DVS technique and the
DPM technique to reduce energy consumption.

The rest of the paper is organized as follows. In Section 2 the pre-
liminaries are introduced. We describe a static task synchronization for
sporadic task algorithm, called STSST, in Section 3. We present a dy-
namic task synchronization for sporadic task algorithm, called DTSST,
in Section 4. The experimental results are presented in Section 5 and
conclude with the summary in Section 6.

2. Preliminaries

2.1. System model

The system consists of a task set which has n canonical sporadic real
time tasks, represented as = …T T T T{ , , , }n1 2 . Each task Ti is described by
a 4-tuple (Pi, Di, Ci, Zi).We assume that the relative deadline of the
sporadic task is equal to its minimum separation period (=D Pi i, for
each task Ti). The sporadic task is sorted by ascending order of their
minimum separation periods i.e. (P1≤ P2, ⋅⋅⋅, ≤ Pn). The major nota-
tions and associated descriptions used in this paper are summarized in
Table 1.

The system utilization Utot is equal to ∑ =i
n C

P1
i
i
and the sporadic task

set is scheduled by the RM policy. Under RM policy, the shorter the
period (minimum separation period), the higher the priority and the
higher priority task executes firstly. The task set which is scheduled by
the RM policy is feasible [19] if

≤ −()U n 2 1tot n
1

(1)

Where n is the number of tasks. We assume that Utot≤ LLB(n) and
that the context's switch overhead is incorporated in the task WCET.

We assume that the sporadic task set has a set of m shared resources
which are represented as = ⋯R R R R{ , , , }m1 2 and are accessed by the
tasks in a mutually exclusive manner. The semaphores, locks and
monitors are the common method to synchronization [20]. The sema-
phores are used for task synchronization in this paper. When a task can

Table 1
Summary of major notations for the task model.

Notation Description

Ti A sporadic real time task
Pi The minimum separation period between the release of two

consecutive instances of the task Ti
Di The relative deadline of the task Ti
Ci The worst case execution time of the sporadic task Ti
WCET Worst case execution time
Zi A list of critical section of the task Ti
Zi, j The jth critical section of the task Ti.
Ti, k The kth invocation of the task Ti
Utot The system utilization
EO The energy overhead from the dormant mode to the active mode
Pidle The power consumption of the processor when it is in idle modes
to The break-even time
Bi The worst case blocking time of the task Ti
SL The low speed
SH The high speed
LLB(n) The lower bound of the system utilization

′Bj The actual blocking time from which the task Tj can block the task Ti
P(Ti) The priority of the task Ti
t′ The earliest time that a task will miss its deadlines
t″ The latest time point that no task is released before t″ and has a

deadline at or before t′
′Dt t, The total processor demand in [t″, t′]

td The absolute deadline of the task Ti
th The time that the task Ti is blocked
β A set of the tasks which are released at or after t″ and have deadline at

or before t′

U t()i
F The total unused time in the FRT-list at time t that can used by the task

Ti
U t()i

rem The available time of the task Ti at time t

W t()i
rem The worst case residue execution time of the task Ti under the

maximum speed at time t.
Stemp A dynamic slowdown factor
tm The earliest time that a task with priority level P(Ti) will miss its

deadline
l The latest time point that no task arrives before tl or not any time

budget in FRT-list with priority level higher or equal to P(Ti)
t2 The arrive time of the task Tk(t2< t1)
t1 The latest time point before tm that the time budget of the task with

priority level lower than P(Ti) is consumed

Y.-w. Zhang et al. Journal of Systems Architecture 83 (2018) 12–22

13

Download English Version:

https://daneshyari.com/en/article/6885210

Download Persian Version:

https://daneshyari.com/article/6885210

Daneshyari.com

https://daneshyari.com/en/article/6885210
https://daneshyari.com/article/6885210
https://daneshyari.com

