
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

Investigating faults missed by test suites achieving high code coverage

Amanda Schwartz⁎,a, Daniel Pucketta, Ying Mengb, Gregory Gayb

aUniversity of South Carolina Upstate, Spartanburg, SC, United States
bUniversity of South Carolina, Columbia, SC, United States

A R T I C L E I N F O

Keywords:
Code coverage
Automated testing
Software testing
Test suite effectiveness

A B S T R A C T

Code coverage criteria are commonly used to determine the adequacy of a test suite. However, studies in-
vestigating code coverage and fault-finding capabilities have mixed results. Some studies have shown that
creating test suites to satisfy coverage criteria has a positive effect on finding faults, while other studies do not. In
order to improve the fault-finding capabilities of test suites, it is essential to understand what is causing these
mixed results. In this study, we investigated one possible source of variation in the results observed: fault type.
Specifically, we studied 45 different types of faults and evaluated how effectively human-created test suites with
high coverage percentages were able to detect each type of fault. Our results showed, with statistical sig-
nificance, there were specific types of faults found less frequently than others. However, improvements in the
formulation and selection of test oracles could overcome these weaknesses. Based on our results and the types of
faults that were missed, we suggest focusing on the strength of test oracles along with code coverage to improve
the effectiveness of test suites.

1. Introduction

In order to ensure software quality, it is essential that the software is
tested thoroughly. However, what exactly constitutes thorough testi ng
can be subjective. As developers lack knowledge of the faults that may
reside in their systems, guidance and a means of judging test suite
adequacy is required. Currently, one of the most popular ways to
evaluate the adequacy of a test suite is through the use of code coverage
criteria.

Code coverage criteria evaluate test suites by examining how well
they cover structural elements such as functions, statements, branches,
and/or conditions of a software system (Pezze and Young, 2006). Each
criterion establishes a set of test obligations over the class-under-t est
(CUT) that must be fulfilled in order to satisfy the criterion. Coverage
criteria are commonly used in both academic research and industry, as
they are easy to understand, establish clear guidelines and stopping
conditions for testing, and are well-supported across a variety of pro-
gramming languages (Groce et al., 2014). Consequently, the confidence
in code coverage being a proper method of evaluating test suites has
become high in the software testing community. In fact, the confidence
is so high that in some domains, such as avionics, evaluating test suites
through the use of code coverage is legally required RTCA/DO-178C,
Heimdahl et al. (2008). Many research studies also validate proposed
techniques by their ability to achieve some level of code coverage (e.g.
Artzi et al., 2011; Yang et al., 2007).

Contrary to the widespread use and acceptance of code coverage
being an adequate measure of test suite effectiveness, studies in-
vestigating the relationship between code coverage and fault-finding
capabilities do not consistently support this. Some studies have shown
that generating test suites to satisfy code coverage criteria has a positive
effect on finding faults (e.g. Gopinath et al., 2014; Namin and Andrews,
2009; Gay, 2017), while other studies do not (e.g. Gay et al., 2015b;
Inozemtseva and Holmes, 2014). To better evaluate whether code
coverage is a proper method of evaluating test suites, it is important to
understand why there are such differences in these findings.

In order to accept high code coverage as an indicator for a test
suite’s ability to find faults, there should be consistent evidence that test
suites with high code coverage are capable of finding more faults than
test suites with lower code coverage. However, since the research does
not always support this, it is important to investigate whether there are
particular factors that affect the ability of a test suite achieving high
code coverage to find faults. Unfortunately, very little work has been
done in this area. Few studies were found (Gay et al., 2016; Heimdahl
et al., 2008; Zhang and Mesbah, 2015) that identify factors that influ-
ence the relationship between code coverage and fault detection. These
studies provide some insight—particularly around the influence of
program structure—but cannot completely explain the different find-
ings in the studies investigating code coverage and fault detection.
More research needs to be conducted to investigate this important issue.

In our previous work (Schwartz and Hetzel, 2016), we began to

https://doi.org/10.1016/j.jss.2018.06.024
Received 20 April 2017; Received in revised form 4 June 2018; Accepted 7 June 2018

⁎ Corresponding author.
E-mail addresses: aschwar2@uscupstate.edu (A. Schwartz), dpuckett@email.uscupstate.edu (D. Puckett), ymeng@email.sc.edu (Y. Meng), greg@greggay.com (G. Gay).

The Journal of Systems & Software 144 (2018) 106–120

0164-1212/ © 2018 Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.06.024
https://doi.org/10.1016/j.jss.2018.06.024
mailto:aschwar2@uscupstate.edu
mailto:dpuckett@email.uscupstate.edu
mailto:ymeng@email.sc.edu
mailto:greg@greggay.com
https://doi.org/10.1016/j.jss.2018.06.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.06.024&domain=pdf


investigate the impact particular fault types had on the relationship
between code coverage and fault finding effectiveness, as modeled
through the use of mutation testing—the seeding of synthetic faults into
the CUT. Specifically, we were interested in whether there were parti-
cular fault types that went undetected more frequently than other fault
types when programs are evaluated by test suites that achieve high code
coverage. Our research showed that the rate of fault detection varied
significantly according to fault type. We also noticed that there were
certain types of faults consistently found less frequently than others.
These were interesting findings that could inspire future research on
why these particular fault types were found less frequently. However,
this study was limited in two ways. First, only class-level mutation
operators were considered. Second, there were many mutation opera-
tors that did not produce enough mutants to have enough data to
perform a statistical analysis or form any solid conclusions. We address
these limitations in this paper. Specifically, this paper makes the fol-
lowing contributions:

• The paper is extended to consider 19 Traditional Mutant Operators
in addition to the original 26 Class Level Mutation Operators con-
sidered in our previous work (Schwartz and Hetzel, 2016).

• An additional 25,100 Class-Level mutants were created to supple-
ment the 15,834 Class-Level mutants created in our previous work,
for a total of 40,934 Class-Level mutants.

• A total of 122,985 Traditional mutants were created and analyzed.

• Statistical tests were performed and presented to determine whether
there is a statistical significance to the faults that go undetected
more frequently than other faults.

• A discussion of the fault types identified as outliers by the statistical
tests is included.

• A suggestion, based on the nature of the faults identified as outliers,
on how to improve test suites and test suite evaluation techniques is
provided.

Our results identified that two types of mutants were found dis-
proportionately often—AORB (Arithmetic Operator Replacement) and
ROR (Relational Operator Replacement). However, four types of mu-
tants were found less often than expected: AOIS (Arithmetic Operator
Insertion), PCI (Type Case Operator Insertion), EAM (Accessor Method
Change), and AODU (Arithmetic Operator Deletion). Test oracles that
more thoroughly inspect internal state would aid in revealing such
faults. Ultimately, code coverage alone does not ensure that faults are
triggered and detected, and the selection of input and oracle have a
dual influence on the effectiveness of a test suite. More attention should
be given to the thoroughness of the selected oracle, and to the variables
that are monitored and checked by the oracle.

The rest of the paper is organized as follows. Section 2 presents
background information and related work. Section 3 explains our ex-
perimental procedures. Section 4 presents the results of our experiment.
A discussion of our results is presented in Section 5. And finally, con-
clusions are discussed in Section 6.

2. Background and related work

Software testing is extremely important to the development process
as the means of ensuring that software has the correct functionality and
is not defective. However, software testing can be very time consuming
and costly. Therefore, a significant amount of time and effort has been
spent to identify ways to reduce the cost of software testing. Much of
this attention has been spent researching automated software testing
procedures. As a result, many different testing platforms and methods
have been proposed, developed, and evaluated (e.g. Anand et al., 2013;
Jensen et al., 2013; Nguyen et al., 2014) and a great deal of progress
has been made on reducing the time necessary for software testing. By
reducing time, the hope is it will also reduce cost. However, the cost
will only be reduced if testing continues to be effective at finding faults.

Missed faults are extremely costly, and any reduction in cost resulting
from the decreased time would be lost with the increase of costs asso-
ciated with missed faults. Therefore, automated testing methods need
to be evaluated to be sure they are effective at finding faults.

The most commonly used metric to evaluate automated test suites is
to use some form of code coverage criteria. Coverage criteria reports a
percentage according to how much source code is executed by the test
suites. The exact calculation depends on the coverage method used. For
example, line coverage is a very simple coverage metric that simply
reports the percentage of lines of code that are covered by the test suite.
Another popular coverage metric, branch coverage, adds an additional
requirement that at each conditional both the true path and the false
path will be executed.

Coverage criteria has become widely accepted in the software
testing community as an adequate measure of test suite effectiveness
(Groce et al., 2014). It is used to validate new automated testing
methods (e.g. Fraser and Arcuri, 2011; Ghosh et al., 2013; Marinescu
and Cadar, 2013), used to compare testing methods based on level of
coverage (e.g. Amalfitano et al., 2012; Gross et al., 2012; Inkumsah and
Xie, 2008), and is used in many domains to determine whether a test
suite as adequate. In fact, in some safety cricital domains, such as
avionics, code coverage is legally required to determine the adequacy of
a test suite RTCA/DO-178C.

Since coverage criteria is frequently the standard for many in terms
of evaluating test suites, it is important to make sure code coverage
actually is a good indicator of test suite effectiveness. Some recent re-
search has been conducted to evaluate whether increasing code cov-
erage also increases a test suite’s ability to find faults. The results of this
research has been mixed. Some studies show achieving high code
coverage is a good indicator for fault-finding capabilities, while other
studies do not.

Studies which provide support for coverage criteria being an ade-
quate measure of test suite effectiveness show a correlation between
code coverage and fault-finding capabilities. For example, early work
by Frankl and Weiss (1993) shows a correlation between test suite ef-
fectiveness and all-use and decision coverage criteria. Cai and
Lyu (2005) found a moderate correlation between fault-finding cap-
abilities and four different code coverage criteria. Del Frate et al. (1995)
report a study which finds a higher correlation between test suite ef-
fectiveness and block coverage than there is between test suite effec-
tiveness and test suite size. Gligoric et al. (2013) studied a total of 26
programs and found that test suite effectiveness was correlated with
coverage, and reported branch coverage as performing the best. A re-
cent study by Kochhar et al. (2015) evaluated two industrial programs
and found a correlation between code coverage and faults detected. In
our past work examining the factors that indicated a high likelihood of
fault detection, we found that high levels of code coverage had a
stronger correlation to the likelihood of fault detection than the ma-
jority of the other measured factors (Gay, 2017). However, we also
found that coverage alone was not enough to ensure fault detection.

Even though there are a number of studies that show a correlation
between code coverage and fault-finding effectiveness, there are also
many studies which do not. In previous work, we reported that sa-
tisfying code coverage alone was a poor indication of test suite effec-
tiveness when suites are generated specifically to achieve coverage
(Gay et al., 2015b; Staats et al., 2012). We studied the fault-finding
effectiveness of automatically generated test suites that satisfied five
code coverage criteria (branch, decision, condition, MC/DC, and Ob-
servable MC/DC) and compared them to randomly generated test suites
of the same size for five different production avionics systems. We
found that, for most criteria, test suites automatically generated to
achieve coverage performed significantly worse than random test suites
of equal size which did not work to achieve high coverage. We did find
that coverage had some utility as a stopping criterion, however. Ran-
domly-generated test suites that used coverage as a stopping criterion
outperformed equally-sized suites generated purely randomly. The

A. Schwartz et al. The Journal of Systems & Software 144 (2018) 106–120

107



Download	English	Version:

https://daneshyari.com/en/article/6885244

Download	Persian	Version:

https://daneshyari.com/article/6885244

Daneshyari.com

https://daneshyari.com/en/article/6885244
https://daneshyari.com/article/6885244
https://daneshyari.com/

