
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

A systematic review on the code smell effect

José Amancio M. Santos⁎,a, João B. Rocha-Juniorb,c, Luciana Carla Lins Pratesd,
Rogeres Santos do Nascimentod, Mydiã Falcão Freitasd, Manoel Gomes de Mendonçac,d

a Technology Department, State University of Feira de Santana, Bahia, Brazil
bDepartment of Exact Science, State University of Feira de Santana, Bahia, Brazil
c Fraunhofer Project Center for Software & Systems Engineering, Federal University of Bahia, Bahia, Brazil
dMathematic Institute, Federal University of Bahia, Bahia, Brazil

A R T I C L E I N F O

Keywords:
Code smell
Systematic review
Thematic synthesis

A B S T R A C T

Context: Code smell is a term commonly used to describe potential problems in the design of software. The
concept is well accepted by the software engineering community. However, some studies have presented di-
vergent findings about the usefulness of the smell concept as a tool to support software development tasks. The
reasons of these divergences have not been considered because the studies are presented independently.
Objective: To synthesize current knowledge related to the usefulness of the smell concept. We focused on em-
pirical studies investigating how smells impact the software development, the code smell effect. Method: A sys-
tematic review about the smell effect is carried out. We grouped the primary studies findings in a thematic map.
Result: The smell concept does not support the evaluation of quality design in practice activities of software
development. There is no strong evidence correlating smells and some important software development attri-
butes, such as effort in maintenance. Moreover, the studies point out that human agreement on smell detection is
low. Conclusion: In order to improve analysis on the subject, the area needs to better outline: (i) factors affecting
human evaluation of smells; and (ii) a classification of types of smells, grouping them according to relevant
characteristics.

1. Introduction

Since the nineties, Software engineering (SE) researchers have ex-
tensively discussed strategies for the systematic evaluation of design
problems in object-oriented (OO) systems. In 1996, Riel (1996) pre-
sented one of the first books in the area. He presented insights into
design improvement and coined the term “design flaw”. In 1999,
Fowler (1999) adopted the term “code smell”. His book focused on
refactoring and presented a catalog of smells, characterizing and pro-
posing specific actions to remove them. In 2006, Lanza and
Marinescu (2006) focused on metrics and heuristics to detect what they
called “disharmonies”. Although the terms “design flaw”, “code smell”
and “disharmony” have been used to define potential design problems,
this work adopts the term code smell, or simply smell, to refer to such
problems.

The works of Riel, Fowler, and Lanza and Marinescu mainly outline
a theory about code smells. The theory is formed by a wide discussion
about heuristics presenting directives “pointing developers in the right
direction on smell detection”(Fowler, 1999). The authors build their

heuristics from identification of aspects that affect the quality of soft-
ware design. Lanza and Marinescu (2006), for example, consider that
three distinct aspects contribute to the code smell characterization: its
size, its interface and its implementation. The works present different
types of code smells, characterizing design problems. This character-
ization is fundamental as it affects common activities of software de-
velopment, such as diagnostics in code inspection or refactoring and
maintenance decisions.

Despite the code smell concept being well defined, it is imperative
to observe the effects related to its adoption on software development.
The Empirical Software Engineering (ESE) discipline offers a suitable
framework for this type of assessment (Wohlin et al., 2012). The dis-
cipline supports adoption of scientific empirical methods in SE, such as
controlled experiment, case study, survey, ethnography, etc. In fact,
code smells have been empirically studied by researchers adopting ESE
support, from different perspectives, since the early2000′s. One pro-
blem is that, once these studies are presented independently, the SE
community lacks a broad knowledge on the issues related to the
adoption of code smells. As a consequence, there is not an overall

https://doi.org/10.1016/j.jss.2018.07.035
Received 15 October 2016; Received in revised form 21 March 2018; Accepted 12 July 2018

⁎ Corresponding author:
E-mail addresses: zeamancio@uefs.br (J.A.M. Santos), joao@uefs.br (J.B. Rocha-Junior), luciana@prates.net (L.C.L. Prates),

rogeres19@gmail.com (R.S.d. Nascimento), mydiaff@dcc.ufba.br (M.F. Freitas), manoel.mendonca@ufba.br (M.G.d. Mendonça).

The Journal of Systems & Software 144 (2018) 450–477

0164-1212/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/10.1016/j.jss.2018.07.035
mailto:zeamancio@uefs.br
mailto:joao@uefs.br
mailto:luciana@prates.net
mailto:rogeres19@gmail.com
mailto:mydiaff@dcc.ufba.br
mailto:manoel.mendonca@ufba.br
https://doi.org/10.1016/j.jss.2018.07.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.07.035&domain=pdf


comprehension of the studies’ findings. The code smell effect is the term
that we defined to capture the issues being empirically addressed by
studies on code smells and the directions where their findings are
pointing.

An ad-hoc literature review on the studies addressing the code smell
effect evidences an interesting phenomenon. We noted that the em-
pirical results show contradictory findings related to the well-accepted
idea that considers code smell as an indicative of potential problems
arising from bad design. For example, Sjøberg et al. (2013) investigated
the relationship between smells and maintenance effort. They noted
that none of the investigated code smells was significantly associated
with maintenance effort increase. Macia et al. (2012b) investigated the
relationship between code smells and problems that occur with an
evolving system’s architecture. In their study, they noted that many of
the detected smells were not related to architectural problems.
Yamashita (2013) summarized a wide analysis based on the same ex-
perimental setup used by Sjøberg et al. (2013). One of her findings is
that “aggregated code smells are not so good indicators of system-level
maintainability”.

In fact, there is no strong evidence linking code smells with pro-
blems arising from bad design choices. Or at least, the question is not
well understood, yet. We highlight some statements reinforcing this
idea. Zhang et al. (2011) declared “... we do not know whether using code
bad smells to target code improvement is effective”. Sjøberg et al. (2013)
declared that “the present focus on bad design as operationalized by code
smells may be misdirected”. Considering each experiment by itself, it is
possible to be confident about its findings. However, in order to eval-
uate how the empirical studies improve the understanding of the code
smell effect, it is necessary to consider a large set of studies (Juristo and
Vegas, 2009).

This work builds empirical support mitigating the lack of under-
standing regards the code smell effect. Our aim is to understand how
the empirical studies address the subject. To do this, we carried out a
systematic literature review, or systematic review (SR), as proposed by
Kitchenham and Charters (2007). In order to achieve our aims, we
explored the experimental settings and findings from an extensive set of
empirical studies (called primary studies) on the code smell effect. To
explore the experimental settings of the primary studies, we identified
and extracted their relevant attributes, such as the type of software and
the type of empirical method adopted. This makes possible to analyze
variations in the experimental settings. To explore the primary studies
findings we had to code findings of the primary studies. Then, we
grouped the findings into themes and sub-themes, presenting them in a
thematic map (Cruzes et al., 2011) describing how the empirical studies
have addressed the smell effect. It is important to highlight that our SR
aims to identify how the area has addressed the code smell effect, in-
stead to present an empirical evaluation for each different type of code
smell.

One of the main difficulties of this type of SR is that the findings of
the empirical studies are frequently presented as textual data. Even
studies that focus on quantitative data, such as studies exploring data in
software repositories, present their findings as textual information. In
our SR, we combined instructions of different methods of synthesis, as
recommended by Cruzes et al. (2011). We followed Cruzes and Dybå
(2011) and Cruzes et al. (2015) mainly. We detail the synthesis method
later on.

From the outcomes of our SR, we present our own findings. We
based them on the observation of: (i) the experimental settings varia-
tions of the primary studies; (ii) the number of primary studies by
themes and sub-themes; and (iii) the convergence/divergence on the
primary studies findings. We found, for example, that the smell concept
does not support the evaluation of design quality, in practice activities
of software development. The evidences for this finding are the di-
vergent results from the primary studies of our SR. Moreover, the stu-
dies did not find correlation between smells and effort on maintenance
activities, and between smells and architectural quality. Another

finding from our SR is that, nowadays, human detection of smells
should not be trusted. Two main evidences support this finding. First,
the primary studies of our SR show that the agreement among devel-
opers detecting smells is low. Second, the studies highlight the re-
levance of demographic data on smells detection activity, such as de-
veloper experience.

We also discuss the difficulties we faced in our SR as some chal-
lenges toward smell effect understanding. For sake of simplicity, we
highlight two of these challenges in this section. First, the high number
of code smells proposed in the literature makes difficult to group studies
in order to synthesize the knowledge for the area. However, for some
smells, similar problems are expected. We consider that investigations
on this topic strengthen syntheses for secondary studies in the area. The
two works Fontana et al. (2016) and Mäntylä and Lassenius (2006a)
that we found in this direction were not strongly validated by other
studies, yet. Another challenge is to deeply understand the relevance of
subjectivity in smell evaluation. As previously discussed, we found the
agreement among humans evaluating smells is low. Some questions
spring up from this outcome: (i) what are the cognitive aspects on smell
concept comprehension? or (ii) what are the factors impacting on the
human perception of smells? These questions are relevant because they
impact the use of smell concept as a tool to support software develop-
ment tasks.

The structure of the rest of this paper is as follows. Section 2 in-
troduces the code smell as the central concept of our work. Section 3
presents prior empirical studies addressing code smell. Sections 4 and 5
present the protocol and the data extraction process of our SR.
Sections 6 and 7 present and discuss the findings. Section 8 presents and
discusses some threats concerning the validity of this study. Lastly,
Section 9 presents our conclusions and proposes future works.

2. A brief history of the code smell concept

The main concept we address in this work is code smell. As dis-
cussed in Section 1, we are using the code smell as a “design flaw” and
“disharmony” indistinctly. All these terms are used to refer to design
problems (Ahmed et al., 2015; Tufano et al., 2015; Palomba et al.,
2015; Bán and Ferenc, 2014; Palomba et al., 2014). Basically, the au-
thors propose strategies for the identification of aspects in the code that
break the principles of the object-oriented paradigm. In one of the first
books on the topic, Riel (1996) used his experience to discuss common
problems observed. He addressed the misuse of relationships between
classes, inheritance, the containment relationship from classes and at-
tributes, and others. After each discussion, he presented heuristics to
avoid the problems. For example, related to the misuse of multiple in-
heritance, one of Riel’s suggestions is “if you have an example of multiple
inheritance in your design, assume you have made a mistake and then prove
otherwise”.

Another book in the area was written by Fowler (1999). He focused
on discussions about refactoring. He defined refactoring as “the process
of changing a software system in such a way that it does not alter the ex-
ternal behavior of the code yet improves its internal structure”. The main
idea is improving the internal structure (design), avoiding future pro-
blems, especially for maintenance. He named and presented refactoring
techniques for many situations, such as “extract method”, “move
method”, “replace data value with object”, and many others. Due to the
fact that his presentation was based on a step-by-step format, including
pieces of code in examples, in some cases it is possible to apply the
techniques automatically.

However, the most interesting discussion proposed by Fowler is
related to when we apply refactoring? Rather than how we apply re-
factoring? Fowler himself classifies how to apply refactoring as a simple
problem and when to apply refactoring as a “not so cut-and-dried” pro-
blem. He suggested that until then, a “vague notion of programming
aesthetics” had been commonly proposed and he wanted “something a
bit more solid”. Then, he presented the term code smell to describe

J.A.M. Santos et al. The Journal of Systems & Software 144 (2018) 450–477

451



Download	English	Version:

https://daneshyari.com/en/article/6885254

Download	Persian	Version:

https://daneshyari.com/article/6885254

Daneshyari.com

https://daneshyari.com/en/article/6885254
https://daneshyari.com/article/6885254
https://daneshyari.com/

