
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Self-adaptation of service compositions through product line reconfiguration

Mahdi Basharia, Ebrahim Bagheri⁎,b, Weichang Dua

a Faculty of Computer Science, University of New Brunswick ,Canada
bDepartment of Electrical and Computer Engineering, Ryerson University, Canada

A R T I C L E I N F O

Keywords:
Service composition
Feature model
Software product lines
Self adaptation

A B S T R A C T

The large number of published services has motivated the development of tools for creating customized com-
posite services known as service compositions. While service compositions provide high agility and development
flexibility, they can also pose challenges when it comes to delivering guaranteed functional and non-functional
requirements. This is primarily due to the highly dynamic environment in which services operate. In this paper,
we propose adaptation mechanisms that are able to effectively maintain functional and non-functional quality
requirements in service compositions derived from software product lines. Unlike many existing work, the
proposed adaptation mechanism does not require explicit user-defined adaptation strategies. We adopt concepts
from the software product line engineering paradigm where service compositions are viewed as a collection of
features and adaptation happens through product line reconfiguration. We have practically implemented the
proposed mechanism in ourMagus tool suite and performed extensive experiments, which show that our work is
both practical and efficient for automatically adapting service compositions once violations of functional or non-
functional requirements are observed.

1. Introduction

Many service and API sharing platforms such as ProgrammableWeb
index thousands of web services which are readily available to be used
by developers. The growing number of such services and their relatively
easy utilization has motivated researchers to create methods and sup-
porting tools to build composite services (Lemos et al., 2016). Given the
high variability of services and the abundance of their variations, re-
searchers have proposed that the development of service compositions
can, among other ways, be performed through Software Product Line
(SPL) engineering techniques in two lifecycle phases, namely domain
engineering and application engineering (Pohl et al., 2005). In the domain
engineering phase, a domain expert would organize the functional as-
pects of the domain through an SPL variability modeling mechanism
such as a feature model (Lee et al., 2002). This will include the definition
of the domain functionality and the services that can implement it. In
the application engineering phase, the user specifies her requirements
by selecting a valid subset of the features from the variability model. On
this basis, in our previous work (Bashari et al., 2016), we have proposed
a method to facilitate the composition of services by enabling the user
to express her requirements in terms of software product line features.
Our method would then automatically build service compositions re-
presented in the form of executable BPEL code based on the selected
features.

In this paper, we are focusing on another aspect of service compo-
sition, which deals directly with the practical execution of service
compositions at runtime. Considering that service compositions often
rely on open API and online services, their functional availability and
non-functional guarantees are highly dependent on the availability and
performance of the services that were used to build them. Therefore,
changes or failures in the constituent services can affect the functional
and non-functional guarantees of the service composition. In order to
handle such situations, we suggest enabling self-adaption. Self-adapta-
tion is the ability of a system to react to changes in its environment to
maintain service and is used in different problem domains such multi-
agent (Jiao and Sun, 2016), cyber-physical (Gerostathopoulos et al.,
2016; Chen et al., 2017), and even industrial software systems
(CÃ!‘mara et al., 2016). We propose enabling self-adaption in order to
allow a service composition to self-heal (Kephart and Chess, 2003) in
response to such failures. Although researchers have been working on
various methods for enabling self-adaptation in the BPEL domain, our
work is still timely considering that BPEL is currently extensively used
for defining business processes in industry and many recent work are
focused on enabling adaption for BPEL processes (ai Sun et al., 2018;
Alfrez and Pelechano, 2017; Margaris et al., 2016; 2015). The proposed
work is also relevant considering that it addresses limitations in existing
work by enabling service compositions to autonomously adapt at run-
time to recover from failure. More specifically, our work addresses the

https://doi.org/10.1016/j.jss.2018.05.069
Received 25 October 2017; Received in revised form 2 April 2018; Accepted 31 May 2018

⁎ Corresponding author.
E-mail addresses: mbashari@unb.ca (M. Bashari), bagheri@ryerson.ca (E. Bagheri), wdu@unb.ca (W. Du).

The Journal of Systems & Software 144 (2018) 84–105

Available online 06 June 2018
0164-1212/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.05.069
https://doi.org/10.1016/j.jss.2018.05.069
mailto:mbashari@unb.ca
mailto:bagheri@ryerson.ca
mailto:wdu@unb.ca
https://doi.org/10.1016/j.jss.2018.05.069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.05.069&domain=pdf


following challenges in the state of the art:

• In some of the existing self-healing methods (Cetina et al., 2009;
Subramanian et al., 2008), it is the developer’s responsibility to
design adaptation strategies. Designing adaptation strategies tend to
be complicated and prone to error given the diversity of ways or
circumstances under which a service or a collection of services can
fail (Lemos et al., 2013).

• Many of the existing work adopt an all-or-none approach in healing
functional failures where they try to fully recover functionality and
fail when full recovery is not possible (Hristoskova et al., 2013;
Angarita et al., 2016).

• Some of the methods only focus on maintaining either functional or
non-functional requirements (Hristoskova et al., 2013; Canfora
et al., 2008). However, an effective mechanism should be able to
consider both types of requirements at the same time when per-
forming adaptation since both of these types of properties can be
critical for the system’s operations (Tan et al., 2014; Angarita et al.,
2016).

A real-life example which can show the shortcomings of existing
approaches is a flight booking website. Such websites often provide
additional features such as hotel and car rental services, which provide
discounted price based on the destination and the selected airline.
These additional features are not critical although being desirable.
These features are typically implemented as a holistic process, which
will break if the services realizing the desired but not critical features
do not perform properly. To address such scenarios, existing self-
adaptive approaches focus either on finding alternate ways to realize
these features, which is not always possible or leave the task of devising
appropriate mitigation strategies to the developer, which could be
complex and labour-intensive. In our work, we address failure by re-
moving the feature(s) which caused the failure if they are non-critical
(such as hotel booking or car rental) while ensuring integrity of the
whole process. As a further example, it might be expected that the
ticketing process finishes in less than a specific amount of time in order
to guarantee customer satisfaction. Existing approaches focus on opti-
mizing the time-to-completion of the process through alternative ser-
vices or processes which may or may not result in meeting the specified
constraint. In our proposed approach, we satisfy such constraints by
removing the minimal set of non-critical features which guarantee the
time-to-completion constraint of the system being satisfied (e.g., auto-
matically removing hotel booking and/or car rental when they take
much longer than expected).

More concretely, we propose a Dynamic Software Product Line
(DSPL) engineering-based method (Hallsteinsen et al., 2008; Bosch and
Capilla, 2012), which enables a service composition to adapt auto-
matically and recover from violations of functional and/or non-func-
tional requirements without the need for the adaptation strategies to be
explicitly defined by the experts. Dynamic software product line en-
gineering methods use software product line models and methods at
runtime to satisfy or maintain requirements (Montalvillo and
DÃaz, 2016). We propose a method based on feature model re-
configuration techniques in software product line engineering to enable
automated re-selection of features such that all critical functional and
non-functional requirements are subsequently recovered after failure.
The concrete contributions of our work are enumerated as follows:

• We propose an automated failure mitigation method, which focuses
on finding an alternate feature model configuration for the service
composition that recovers critical functional and non-functional
requirements. This method is able to find an alternate service
composition to replace the failed service composition.

• In order to enable finding an optimal feature model configuration
with desired non-functional properties at runtime, we propose a
method which is able to estimate the effect of each selected feature

on the non-functional properties of the service composition.
Additionally, the proposed method is able to update its estimates at
runtime as the non-functional properties of the constituting services
of the service composition change.

• We have implemented the proposed method and added it to our
existing service development suite, called Magus. The tool suite al-
lows for the specification of the product line representation of the
domain, as well as the modelling of the desired functional and non-
functional requirements. Magus will automatically generate execu-
table BPEL code, continuously monitor the execution of the gener-
ated service composition and adapt it as necessary.

It should be noted that the work in this paper is an extension of our
earlier work (Bashari et al., 2017b) and extends it in the following ways
that are not addressed earlier: (1) In this paper, we propose a systematic
approach for calculating how software product line features can impact
the non-functional properties of a service composition and how they
can be continuously monitored, estimated and maintained; (2) We
present an algorithm, and formally prove its desirable characteristics,
for finding linearly independent feature subsets within a software
product line feature model. Linearly independent feature sets are im-
portant since a non-functional property of a service composition can be
estimated as a unique linear equation over the availability of one of the
features in each of these subsets; (3) We extend the formal re-
presentation of constraints within the context of psuedo-boolean opti-
mization to cover three distinct types of constraints, namely the con-
straints defined over non-functional properties of service composition
by the user, the constraints defined over combination of features which
describe a valid service composition, and the assumptions made over
input data by the failed service; and (4) We introduce our fully func-
tional publicly available online tool suite and also provide an extensive
comparative analysis of the literature beyond what was covered earlier.

The rest of this paper is organized as follows: Section 2 provides a
general overview of the techniques that are used in this paper along
with an introduction to the running case study. This is followed by
Section 3, which provides an overview of the proposed approach. The
details of this approach is presented in two sections. In the first section
(Section 4), we discuss how features and non-functional properties are
related to each other while the adaptation mechanism is proposed and
discussed in a subsequent section (Section 5). In Section 6 the archi-
tecture used to implement the proposed approach has been discussed.
This section is followed by Section 7 in which we go through the
functionality provided by our tool suite. In Section 8, the design details
of the experiments for evaluating the proposed approach have been
presented and our findings have been reported. In Section 9, the pro-
posed work is compared with existing works in both self-healing soft-
ware systems and dynamic software product line engineering. The
paper is finally concluded with a discussion of lessons learnt, threats to
validity as well as a summary of the findings and directions for future
work.

2. Background

In the following, background on feature models, how service com-
positions can be contextually modeled, and how automated composi-
tion of services can be performed, will be provided.

2.1. Feature models

Feature models are among the more popular models used in the SPL
community for representing the variability of the problem domain
(Benavides et al., 2010). Feature models allow for hierarchical re-
presentation of features that are related to each other through structural
and/or integrity constraints. The structural constraints relate features to
their parents through Mandatory, Optional, Alternative, and Or rela-
tions. Mandatory children of a feature must be selected when their

M. Bashari et al. The Journal of Systems & Software 144 (2018) 84–105

85



Download English Version:

https://daneshyari.com/en/article/6885264

Download Persian Version:

https://daneshyari.com/article/6885264

Daneshyari.com

https://daneshyari.com/en/article/6885264
https://daneshyari.com/article/6885264
https://daneshyari.com

