
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Enhancing change prediction models using developer-related factors

Gemma Catolino⁎,a, Fabio Palombab, Andrea De Luciaa, Filomena Ferruccia, Andy Zaidmanc

aUniversity of Salerno, Italy
bUniversity of Zurich, Switzerland
c Delft University of Technology, The Netherlands

A R T I C L E I N F O

Keywords:
Change prediction
Mining software repositories
Empirical study

A B S T R A C T

Continuous changes applied during software maintenance risk to deteriorate the structure of a system and are a
threat to its maintainability. In this context, predicting the portions of source code where specific maintenance
operations should be focused on may be crucial for developers to prevent maintainability issues. Previous work
proposed change prediction models relying on product and process metrics as predictors of change-prone source
code classes. However, we believe that existing approaches still miss an important piece of information, i.e.,
developer-related factors that are able to capture the complexity of the development process under different
perspectives. In this paper, we firstly investigate three change prediction models that exploit developer-related
factors (e.g., number of developers working on a class) as predictors of change-proneness of classes and then we
compare them with existing models. Our findings reveal that these factors improve the capabilities of change
prediction models. Moreover, we observed interesting complementarities among the prediction models. For this
reason, we devised a novel change prediction model exploiting the combination of developer-related factors and
product and evolution metrics. The results show that such a combined model is up to 22% more effective than
the single models in the identification of change-prone classes.

1. Introduction

Software systems are subject to continuous evolution, driven by
changes in the requirements imposed by the stakeholders on the one
hand and by the resolution of bugs threatening their reliability on the
other hand (Lehman and Belady, 1985). Unfortunately, the more
changes developers apply to the software system the more complex the
system is likely to become, thereby eroding the original design and
possibly reducing the overall maintainability (Parnas, 1994). While
change is unavoidable, it needs to be controlled by developers. In this
context, the up front identification of code elements potentially ex-
hibiting a higher change-proneness may be important for developers for
two main reasons: on the one hand, change-proneness can be con-
sidered a quality indicator that can be used to warn developers when
touching code that should be refactored (Zhou et al., 2009); on the
other hand, developers can plan preventive maintenance operations,
such as refactoring (Fowler et al., 1999), peer-code review (Bacchelli
and Bird, 2013; Beller et al., 2014), and testing (Soetens et al., 2016;
Moonen et al., 2008), aimed at increasing the quality of the code and
reducing future maintenance effort and costs (Fowler et al., 1999).

Change prediction is the branch of software engineering aimed at
identifying the entities more prone to be modified in the future, helping
developers in both planning preventive maintenance actions and
keeping the complexity of source code under control (Koru and
Liu, 2007). Previous research focused on (i) the analysis of the factors
influencing the change-proneness of classes (Bieman et al., 2003; Di
Penta et al., 2008; Khomh et al., 2012; Miryung Kim, 2014; Soetens
et al., 2016) and (ii) the definition of prediction models able to support
developers by recommending the classes on which preventive main-
tenance actions should be performed (Sharafat and Tahvildari, 2007;
Han et al., 2008; Sharafat and Tahvildari, 2008; Han et al., 2010).

An important body of previous work has explored the possibility to
use product metrics (e.g., the Chidamber and Kemerer Object Oriented
metric suite Chidamber and Kemerer, 1994) as indicators of the change-
proneness of classes. In this case, the underlying assumption is that
classes having low code quality are more prone to be modified in the
future. As an example, Zhou et al. (2009) proposed a change prediction
model relying on cohesion, coupling, and inheritance metrics, finding
that code metrics can be exploited for predicting change-prone classes,
while the number of lines of code often represents a confounding effect

https://doi.org/10.1016/j.jss.2018.05.003
Received 27 July 2017; Received in revised form 28 April 2018; Accepted 2 May 2018

⁎ Corresponding author.
E-mail addresses: gcatolino@unisa.it (G. Catolino), palomba@ifi.uzh.ch (F. Palomba), adelucia@unisa.it (A. De Lucia), fferrucci@unisa.it (F. Ferrucci),

a.e.zaidman@tudelft.nl (A. Zaidman).
URL: http://docenti.unisa.it/001775/home (F. Ferrucci).

The Journal of Systems & Software 143 (2018) 14–28

Available online 03 May 2018
0164-1212/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.05.003
https://doi.org/10.1016/j.jss.2018.05.003
mailto:gcatolino@unisa.it
mailto:palomba@ifi.uzh.ch
mailto:adelucia@unisa.it
mailto:fferrucci@unisa.it
mailto:a.e.zaidman@tudelft.nl
http://docenti.unisa.it/001775/home
https://doi.org/10.1016/j.jss.2018.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.05.003&domain=pdf


worsening the performance of prediction models.
In the recent past, Elish and Al-Rahman Al-Khiaty (2013) in-

vestigated the role of process metrics in the context of change predic-
tion models. More specifically, they devised the so-called evolution
metrics, i.e., metrics characterizing the history of a class under different
perspectives (e.g., the number of past modifications of a class in a
certain time window). Afterwards, they found that a change prediction
model based on such evolution metrics performs better than the one
built using code metrics.

Despite the effort devoted by the research community over the
years, we believe that current approaches missed an important piece of
information, i.e., they do not consider developer-related factors, which
can provide information on how developers perform modifications and
how complex the development process is. In our previous
paper (Catolino et al., 2017a) we conjectured that such aspects can be a
useful source of information to predict classes more likely to be changed
in the future. To verify the conjecture, we empirically evaluated the
performance of three prediction models based on developer-related
factors previously defined in literature. Specifically, we experimented
with (i) Basic Code Change Model (BCCM) proposed by Hassan (2009)
which relies on the entropy of changes applied by developers, (ii) the
Developer Changes Based Model (DCBM) devised by
Di Nucci et al. (2017) that considers to what extent developers apply
scattered changes in the system, and (iii) the Developer Model (DM)
proposed by Bell et al. (2013) which analyzes how many developers
touched a code element over time. Although such models were ori-
ginally proposed in the context of bug prediction, we selected them
since they are based on metrics possibly influencing the change-pro-
neness of classes as well. For instance, the lack of coordination between
multiple developers working on the same code element may lead to the
introduction of design pitfalls that negatively influence the maintain-
ability of source code (Kraut and Streeter, 1995), possibly making it
more change-prone. Furthermore, to have a comprehensive view of the
usefulness of developer-related factors in change prediction, we also
compared the performance of the developer-based models with the ones
proposed by Elish and Al-Rahman Al-Khiaty (2013) and
Zhou et al. (2009).

The results demonstrated that the developer-based prediction
models reached an overall F-Measure ranging between 57% and 68%
and an Area Under the ROC Curve (AUC-ROC) ranging between 56% and
70%. Among them, the DCBM model was the one obtaining the highest
accuracy. When compared to the model exploiting the evolution me-
trics devised by Elish and Al-Rahman Al-Khiaty (2013), we found that
the developer-based prediction models improved the F-Measure by up
to 9% and the AUC-ROC by up to 9%. More importantly, all the in-
vestigated prediction models showed interesting complementarities in
the set of change-prone classes correctly predicted. Indeed, we dis-
covered that different models capture different change-prone instances,
e.g., change-prone classes modified by several developers can only be
captured by developer-based models and not by the approaches relying
on product or evolution metrics, while poorly cohesive classes changed
by few developers are only detectable using a model based on product
metrics. Such a complementarity paves the way for new prediction
models exploiting a combination of the predictors used by the in-
vestigated models.

In this paper, we extend our previous work (Catolino et al., 2017a)
with the aim of (i) designing a combined change prediction model that
exploits the complementarities among the investigated product, pro-
cess, and developer-based models and (ii) increasing the general-
izability of our findings by considering a larger dataset. More specifi-
cally, we:

1. Devise and evaluate the performance of a new change prediction
model based on a combination of the metrics used by the previously
investigated models. On the basis of the complementarities dis-
covered among the investigated change prediction models, we

performed a detailed study—exploiting the Information Gain algo-
rithm (Quinlan, 1986)—with the aim of finding the subset of pre-
dictors more relevant for the identification of change-prone classes.
Then, we exploited them to build and evaluate a combined change
prediction model.

2. Extend the empirical evaluation of developer-based change predic-
tion models and their comparison with the state of the art. While we
previously analyzed 197 releases of 10 software systems having a
total of 105,693 commits and 358 developers, this study considers
192,274 commits made by 657 developers over 408 releases of 20
software systems having different size and scope.

On the one hand, the results of the study confirm our previous
findings showing the usefulness of developer-related factors in change
prediction. On the other hand, we found that the novel combined
change prediction model clearly outperforms the baseline models,
being more accurate in the predictions by up to 22% in terms of F-
Measure.

Structure of the paper: In Section 2 we discuss background and
related literature on change prediction. In Section 3 the design of the
empirical study is described, while Section 4 reports the results
achieved when evaluating the performance of the experimented change
prediction models. Section 5 discusses the threats that could affect the
validity of our study. Finally, Section 6 concludes the paper.

2. Background and related work

In this section we firstly present a background on the problem of
change prediction and how it can be used to improve the quality of
source code; then, we overview the related literature.

2.1. The problem of predicting change-prone classes

Change-prone classes represent pieces of code that, for different
reasons, tend to change more often: this may be due to the importance
of a class for the business logic of the system or because it is not
properly designed by developers (e.g., in the presence of code smells
Khomh et al., 2012; Palomba et al., 2017). Keeping track of these
classes can be relevant to create awareness among developers about the
fact that these classes tend to change frequently, possibly hiding design
issues that should be solved.

It is important to note that this type of classes must not be confused
with bug-prone code elements. The two sets of classes might have some
relationships but they still remain conceptually disjoint. In the first
place, bug-proneness indicates source code that is more likely to have
bugs in the near future, thus, the fact that a class has bugs does not
imply that it changes more often. Secondly, bug-prone classes might
also be change-prone (changes are made to correct faults), but correc-
tions are not the only reason for changes, as classes might change due to
software evolution. Thus, change- and bug-proneness of classes might
have some relation, but are not the same.

Change prediction models represent an established way to identify
change-prone classes (Zhou et al., 2009). In this context, a supervised
technique is exploited, where a set of independent variables (i.e., me-
trics characterizing a class) are used by a machine learning classifier
(e.g., Logistic Regression Le Cessie and Van Houwelingen, 1992) to
predict a dependent variable (i.e., the change-proneness of classes). In a
real-case scenario, change prediction models might be directly in-
tegrated in developers software analytics dashboards (e.g., BITERGIA

1),
thus continuously providing feedback on the source code classes that
are more likely to change in the future. Such feedback can be used by
developers as input for performing preventive maintenance activities
before putting the code into production: for instance, in a continuous

1 https://www.bitergia.com.

G. Catolino et al. The Journal of Systems & Software 143 (2018) 14–28

15

https://www.bitergia.com


Download English Version:

https://daneshyari.com/en/article/6885274

Download Persian Version:

https://daneshyari.com/article/6885274

Daneshyari.com

https://daneshyari.com/en/article/6885274
https://daneshyari.com/article/6885274
https://daneshyari.com

