
The Journal of Systems and Software 142 (2018) 57–72 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Filling in the missing link between simulation and application in 

opportunistic networking 

Adrián Sánchez-Carmona 

a , ∗, Frédéric Guidec 

b , Pascale Launay 

b , Yves Mahéo 

b , Sergi Robles a 

a Universitat Autònoma de Barcelona (UAB), Spain 
b IRISA (UMR 6074), Université Bretagne Sud, France 

a r t i c l e i n f o 

Article history: 

Received 13 September 2017 

Revised 9 April 2018 

Accepted 14 April 2018 

Available online 20 April 2018 

Keywords: 

Distributed systems 

Software evaluation 

Opportunistic networking 

Emulation systems 

Software development process 

a b s t r a c t 

In the domain of opportunistic networking, just like in any other domain of computer science, the engi- 

neering process should span all stages between an original idea and the validation of its implementation 

in real conditions. Yet most researchers often stop halfway along this process: they rely on simulation to 

validate the protocols and distributed applications they design, and neglect to go further. Their algorithms 

are thus only rarely implemented for real, and when they are, the validation of the resulting code is usu- 

ally performed at a very small scale. Therefore, the results obtained are hardly repeatable or comparable 

to others. 

LEPTON is an emulation platform that can help bridge the gap between pure simulation and fully 

operational implementation, thus allowing developers to observe how the software they develop (instead 

of pseudo-code that simulates its behavior) performs in controlled, repeatable conditions. 

In this paper we present LEPTON, an emulation platform we developed, and we show how existing 

opportunistic networking systems can be adapted to run with this platform. Taking two existing middle- 

ware systems as use cases, we also demonstrate that running demanding scenarios with LEPTON consti- 

tute an excellent stress test and a powerful tool to improve the opportunistic systems under test. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Opportunistic networks constitute a category of mobile ad hoc 

networks in which the sparse or irregular distribution of mo- 

bile devices (or nodes) yield frequent link disruptions and net- 

work partitions ( Boldrini et al., 2014 ). In such conditions, the store, 

carry and forward principle of Delay Tolerant Networking (DTN 

Fall, 2003; Qirtas et al., 2017 ) helps bridge the gap between non- 

connected parts of the network. Whenever a transient contact oc- 

curs between two nodes, this contact can be exploited opportunis- 

tically by these nodes to exchange messages. The messages re- 

ceived by a node during a contact are stored in a local cache, so 

they can be carried physically as the node is moving, and for- 

warded later to other mobile nodes. 

Developing middleware and applications for opportunistic net- 

works is a challenge, because message delivery is often not guaran- 

teed, and because this delivery can be delayed by minutes, hours, 

or days, as it depends on the wanderings of benevolent mobile car- 

riers. In order to meet this challenge developers must follow a rig- 

∗ Corresponding author. 

E-mail address: adria.sanchez@deic.uab.cat (A. Sánchez-Carmona). 

orous procedure, that ideally should involve all the steps shown in 

Fig. 1 . 

First comes the initial idea, the conception of the mechanisms. 

After this initial phase, the idea must be reified into a particular 

model, which can then be analyzed formally. During this analy- 

sis, the mechanisms and procedures can be checked, some theo- 

retical results can be obtained, and limitations can be identified. 

The next stage is typically simulation. In a simulator, the system 

can be tested in a given set of scenarios. Even if these scenar- 

ios involve datasets that come from the real world (e.g., traces of 

real taxi cabs, or positions of real people evacuating a stadium), 

or even if the simulator is assumed to simulate very accurately 

all the layers of the protocol stack, the system under evaluation is 

usually executed based on pseudo-code. This does not prove that 

the system being designed can eventually be deployed and used 

for real. Results obtained through simulation can be deceptive, cre- 

ating a misleading feeling of scientific correctness. Indeed, as ob- 

served in Kurkowski et al. (2005) , the credibility of simulation re- 

sults tends to decrease as the use of simulation increases. The fi- 

nal validation of an opportunistic networking system should thus 

always be based on real full-featured code (accounting for exam- 

ple for memory management or concurrency issues), rather than 

on the pseudo-code used in simulations. 

https://doi.org/10.1016/j.jss.2018.04.025 

0164-1212/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.jss.2018.04.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.04.025&domain=pdf
mailto:adria.sanchez@deic.uab.cat
https://doi.org/10.1016/j.jss.2018.04.025


58 A. Sánchez-Carmona et al. / The Journal of Systems and Software 142 (2018) 57–72 

Fig. 1. Engineering process of an opportunistic networking system. 

Testing real code in real conditions can be painstaking, or even 

impossible, especially when these real conditions involve the mo- 

bility ( Zhu et al., 2012 ) of hundreds of nodes over hundreds of 

hours. Emulation is an approach that can help with this respect, as 

it makes it possible to run real code in tightly controlled (and re- 

peatable) conditions. The emulation stage can be seen as the miss- 

ing link in the engineering process of most existing opportunis- 

tic networking systems. This stage is crucial to make sure that the 

code under test —with its bugs and limitations— is scalable, and 

that it can correctly integrate and interact with the other compo- 

nents of the system (such as users, for instance). Using an emula- 

tor, these properties can be verified under the desired conditions, 

and results can be reproduced and compared to others at conve- 

nience ( Sharma et al., 2017 ). 

Briefly put, we could say that emulation is more apt than sim- 

ulation to evaluate real code, and easier and cheaper than full- 

scale field experimentation. Therefore, we propose to complement 

(not to substitute) simulation and experimentation with emulation, 

hence putting the emphasis on an engineering step in the develop- 

ment of an opportunistic system that could reveal itself especially 

useful as the complexity of this system grows. 

In this paper we present LEPTON (Lightweight Emulation Plat- 

Tform for Opportunistic Networking), an emulation platform that 

has been primarily designed to allow the developers of opportunis- 

tic networking software (i.e., middleware and/or applications) to 

run their real software systems with simulated mobility. With LEP- 

TON, an implementation can run in real time, either on a real de- 

vice (e.g. smartphone, tablet, laptop) or on a virtual one. 

LEPTON also constitutes an interesting demonstration tool, 

since participants in a demo session can use an opportunistic 

application deployed on smartphones or tablets, while a display 

screen shows the simulated mobility of all devices. 

In this paper our main contribution is the description of LEP- 

TON, our lightweight emulation platform for opportunistic net- 

working. In order to show its usefulness, we also use it to com- 

pare two existing Opportunistic Networking (OppNet) middleware 

systems, using the same scenario and mobility traces. 

The remainder of this paper is organized as follows. Related 

work is discussed in Section 2 . In Section 3 we provide an 

overview of LEPTON and of its salient features. In Section 4 we 

present briefly the two OppNet systems we considered as use- 

cases for our proof of concept, and we explain how each system 

was adapted to be used with LEPTON. Experimental results are 

presented in Section 5 , and Section 6 concludes this paper. 

2. Related work 

Simulation is the lightest approach to observe how oppor- 

tunistic networking protocols or applications can perform at run- 

time. General-purpose discrete event network simulators such 

as ns-2 ( ns-2, 2018 ), ns-3 ( ns-3, 2018 ), OMNeT++ ( Varga and 

Hornig, 2008 ), QualNet ( QualNet, 2018 ) or Riverbed Modeler 

( SteelCentral, 2018 ) include modules that can simulate the mobil- 

ity of nodes in a wireless network. Most of these simulators im- 

plement standard wireless MAC layers (e.g., IEEE 802.11, 802.15.1, 

802.15.4), and they can optionally simulate physical phenomena 

observed on the wireless medium, such as shadowing, free space 

path loss, fading, co-channel interference, etc. 

Because of its ease of use, the simulator ONE ( Keränen et al., 

2009; Roy et al., 2017 ) has become the tool of choice for simulat- 

ing opportunistic networks. It supports a variety of mobility mod- 

els, and contact or mobility traces such as those available in the 

CRAWDAD database ( CRAWDAD, 2018 ) can be imported with lit- 

tle effort. Unlike many other simulators, ONE does not attempt to 

simulate the PHY and MAC protocol layers accurately. Communica- 

tion is message-based, rather than packet-based or frame-based. 

A message is transferred between two nodes if these nodes are 

considered as neighbors at the time the message is sent. Option- 

ally, the delivery of a message can be delayed so as to account for 

a set transmission bitrate. A commonly praised feature of ONE is 

that several of the major DTN routing protocols (e.g., First Contact, 

Epidemic dissemination, Spray and Wait, MaxProp, Prophet) have 

already been implemented for this simulator, so they are imme- 

diately available for running simulations. Yet these protocols are 

implemented in such a way that no control messages are ever ex- 

changed between nodes during a simulation run. Comparing the 

results obtained in such conditions therefore makes little sense, as 

the overhead induced by control traffic is simply ignored. 

A simulator is indeed a convenient tool for the developer of a 

new protocol or distributed algorithm, as simulation makes it pos- 

sible to observe how this protocol or algorithm performs in a vir- 

tual setup in which everything is fully repeatable and controllable. 

This setup can include hundreds or thousands of nodes, which 

would hardly be practical in real settings. Yet the validity of results 

obtained with a simulator is always debatable, for every single part 

of a simulated system can be deemed as being not realistic enough . 

For example, the mobility models used in simulators can hardly re- 

produce the diversity of real mobility patterns. Usually, this is mit- 

igated by using contact or mobility traces instead of pure algorith- 

mic models, but these traces have often been captured in very spe- 

cific conditions (e.g., people moving around in a conference build- 

ing, taxi cabs roaming city streets, etc.) Radio channel modeling is 

also debatable, as models cannot mimic all the complexity of real 

wireless medium characteristics, such as radio wave reflection on 

obstacles (e.g., walls, furniture, etc.) or interferences due to neigh- 

boring electronic devices. However, the main drawback is that the 

protocols or distributed algorithms tested in simulators are often 

coded as pseudo-code (it is not possible to execute the real code 

in a discrete event-driven simulation), and are thus significantly 

simpler than the real code that could be deployed on real mobile 

devices. With discrete event simulators, the time required to react 

to an event is neglected, for event processing is performed atom- 

ically. When developing code for real execution, though, attention 

must be paid to ensuring that concurrent events can be processed 

as smoothly and efficiently as possible. 

Since simulation results can only provide an indication of how 

a system should perform in real life, testing this system in real 

conditions is the ultimate way to confirm that it indeed performs 

as expected. Yet running experiments in real conditions requires 

deploying testbeds, possibly at a large scale. While everything is 

virtual in a simulation, everything is –or at least should be– real 

in a testbed. Indeed, a testbed is simply a perfectly normal in- 

stance of the system that is under study in a particular experi- 

ment ( Göktürk, 2007 ). Running experiments in a testbed offers the 

greatest degree of realism (since everything is running “for real”), 

but deploying and managing hardware and software in a testbed is 

a costly and time-consuming endeavor. To the best of our knowl- 

edge no large testbed has ever been deployed specifically for op- 

portunistic networking, besides DieselNet, which itself was part of 

the DOME testbed ( Soroush et al., 2011 ). Some general-purpose 

large-scale network testbeds such as ORBIT ( Raychaudhuri et al., 

2005 ) can support mobile nodes, though. 

Simulation and testbeds lie on opposite ends of the experi- 

mentation spectrum. Simulation allows repeatability, tight control, 

large scale, and cost-effective tests. But because of the high level of 

abstraction it offers, most results it produces should only be con- 



Download English Version:

https://daneshyari.com/en/article/6885292

Download Persian Version:

https://daneshyari.com/article/6885292

Daneshyari.com

https://daneshyari.com/en/article/6885292
https://daneshyari.com/article/6885292
https://daneshyari.com

