
The Journal of Systems and Software 142 (2018) 92–114

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Early evaluation of technical debt impact on maintainability

José M. Conejero

a , ∗, Roberto Rodríguez-Echeverría

a , Juan Hernández

a , Pedro J. Clemente

a ,
Carmen Ortiz-Caraballo

b , Elena Jurado

a , Fernando Sánchez-Figueroa

a

a Quercus Software Engineering Group, University of Extremadura, Avda. de la Universidad, s/n, 10071, Spain
b Escola d’Enginyeria d’Igualada, Universitat Politècnica de Catalunya, Av. Pla de la Massa, n ° 8, 08700 Igualada, Spain

a r t i c l e i n f o

Article history:

Received 15 March 2017

Revised 24 March 2018

Accepted 18 April 2018

Available online 21 April 2018

Keywords:

Technical Debt indicator

Requirements

Modularity anomalies

Maintainability

Empirical evaluation

a b s t r a c t

It is widely claimed that Technical Debt is related to quality problems being often produced by poor

processes, lack of verification or basic incompetence. Several techniques have been proposed to detect

Technical Debt in source code, as identification of modularity violations, code smells or grime buildups.

These approaches have been used to empirically demonstrate the relation among Technical Debt indica-

tors and quality harms. However, these works are mainly focused on programming level, when the sys-

tem has already been implemented. There may also be sources of Technical Debt in non-code artifacts,

e.g. requirements, and its identification may provide important information to move refactoring efforts

to previous stages and reduce future Technical Debt interest. This paper presents an empirical study to

evaluate whether modularity anomalies at requirements level are directly related to maintainability at-

tributes affecting systems quality and increasing, thus, system’s interest. The study relies on a framework

that allows the identification of modularity anomalies and its quantification by using modularity metrics.

Maintainability metrics are also used to assess dynamic maintainability properties. The results obtained

by both sets of metrics are pairwise compared to check whether the more modularity anomalies the

system presents, the less stable and more difficult to maintain it is.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Since Technical Debt was firstly introduced in Cunningham

(1992), many approaches have emerged to identify (Vetro’ et al.,

2010 ; Wong et al., 2011 ; Schumacher et al., 2010), estimate (Chin

et al., 2010; Curtis et al., 2012a ; Letouzey and Ilkiewicz, 2012;

Marinescu, 2012) or, in general, deal with Technical Debt by dif-

ferent techniques (Ramasubbu and Kemerer, 2014). As the authors

state in Kruchten et al. (2012), “most authors agree that the ma-

jor cause of Technical Debt is schedule pressure, e.g. ignoring refac-

torings to reduce time to market” (Abad and Ruhe, 2015). However,

as they also claim, Technical Debt is also related to quality prob-

lems being often produced by carelessness, lack of education, poor

processes, lack of verification or, even, basic incompetence . These ori-

gins of Technical Debt are called unintentional debt (Brown et al.,

2010) and examples of these quality problems occasioned by

Technical Debt are bad reusability and low understandability

(Griffith et al., 2014), error-prone and higher number of defects

∗ Corresponding author.

E-mail addresses: chemacm@unex.es (J.M. Conejero), rre@unex.es (R. Rodríguez-

Echeverría), juanher@unex.es (J. Hernández), pjclemente@unex.es (P.J. Clemente),

carmen.ortiz@eei.upc.edu (C. Ortiz-Caraballo), elenajur@unex.es (E. Jurado),

fernando@unex.es (F. Sánchez-Figueroa).

(Zazworka et al., 2014), negative impact on robustness, perfor-

mance, security and transferability (Curtis et al., 2012a , 2012b) or,

especially, on maintainability issues like stability (Zazworka et al.,

2014). A study conducted by Chen and Huang (2009) highlights

that stability is one of the top 10 higher-severity software develop-

ment problem factors which affect software maintainability. More-

over, maintainability is currently draining 60–90% of the total cost

of software development (Chen and Huang, 20 09 ; Erlikh, 20 0 0 ;

Hung, 2007).

To solve these issues, several techniques have been proposed

in the literature to detect Technical Debt in source code, such as

the identification of modularity violations (Wong et al., 2011), code

smells (Schumacher et al., 2010 ; Marinescu, 2004), grime buildups

(Gueheneuc and Albin-Amiot, 2001 ; Izurieta and Bieman, 2007)

or the identification of violations of good programmer practices

by using Automatic Static Analysis (ASA) approaches (Vetro’ et al.,

2010). Indeed, the combination of these four different techniques

has been empirically evaluated in Zazworka et al. (2014) to test

which practices perform better under different conditions and how

they could complement each other to estimate Technical Debt in-

terests (quality harms). Technical debt interest may be defined

as the payment in the form of extra time, effort, and cost to ad-

dress future changes in a project (Abad and Ruhe, 2015). Simi-

larly, in Ramasubbu and Kemerer (2014), Griffith et al. (2014) ,

https://doi.org/10.1016/j.jss.2018.04.035

0164-1212/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2018.04.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.04.035&domain=pdf
mailto:chemacm@unex.es
mailto:rre@unex.es
mailto:juanher@unex.es
mailto:pjclemente@unex.es
mailto:carmen.ortiz@eei.upc.edu
mailto:elenajur@unex.es
mailto:fernando@unex.es
https://doi.org/10.1016/j.jss.2018.04.035

J.M. Conejero et al. / The Journal of Systems and Software 142 (2018) 92–114 93

Curtis et al. (2012b) , and Zazworka et al. (2011) , the authors

conducted studies where they empirically evaluated the relation

among different Technical Debt indicators and software quality

characteristics in order to test whether the former are really re-

lated to the latter.

What all these works have in common is that they are fo-

cused on the programming level, when the system has already

been implemented (if not completely, at least, partially). However,

as claimed in Li et al. (2014) , Technical Debt can span all the phases

of the software lifecycle and there may also be sources of Technical

Debt in non-code artifacts (Brown et al., 2010), e.g. requirements

documents. Therefore, its identification at early stages of develop-

ment may provide developers with important information to apply

refactoring approaches (e.g. based on aspect-oriented techniques

Moreira et al., 2013 ; Jacobson and Ng, 2004 ; Jacobson, 2003) im-

proving, thus, modularity also at source code and therefore reduc-

ing Technical Debt at latest development stages (or, at least, reduc-

ing the future global interest). The reality is that requirements al-

ways change and Technical Debt is inevitable (Allman, 2012), how-

ever, the issue is not eliminating debt, but rather reducing it or

even moving its identification to previous stages. Indeed, this is

more important if we consider that those who incurred the debt

may usually not be the same as those who will have to re-pay later

(Brondum and Zhu, 2012).

Nevertheless, to the best of our knowledge, little effort has

been dedicated to study the implications of Technical Debt at ear-

lier stages of development. There are some works that have dealt

with the definition of Technical Debt at the requirements level

(Abad and Ruhe, 2015 ; Ernst, 2012) or its relation with architec-

tural dependencies (Li et al., 2014 ; Brondum and Zhu, 2012). Even,

these types of debts have been described in the mapping study in-

troduced in Alves et al. (2016) as Requirements and Architecture

Debts. However, the empirical evaluation of the quality problems

produced by Technical Debt at early stages has been neglected in

the literature so far. Based on this assumption, we have formu-

lated the main question that we try to answer in this work: is

there a relationship between Technical Debt indicators at the require-

ments level and software quality? Concretely, we focus on modular-

ity violations (a well-known Technical Debt indicator Wong et al.,

2011 ; Alves et al., 2016) and software stability (a quality attribute

related to maintainability International Organization of Standard-

ization, 2014). Thus, our main question is reformulated as follows:

is there a relationship between modularity anomalies at the require-

ments level and system stability? The existence of this relationship

would provide empirical evidence of the harmful relationship be-

tween Technical Debt and software quality at early stages of devel-

opment.

To tackle the problem of answering this question, this paper

presents an empirical study where we evaluate whether modular-

ity anomalies at the requirements level occasioned by crosscutting

concerns (Baniassad et al., 2006) are directly related to instabil-

ity of the system, which would increase its interest. The empirical

study is supported by the application of a conceptual framework

defined in previous work (Conejero, 2010). The framework allows

the identification of modularity violations based on scattering, tan-

gling and crosscutting at any abstraction level but concretely at the

requirements level. Moreover, based on this conceptual framework

a set of software metrics were defined to quantify the Degree of

Crosscutting properties that a system may have. In this work, these

metrics are validated by comparing them with similar metrics in-

troduced by other authors, whilst their utility is illustrated by com-

paring them with a set of metrics that measure stability. All the

metrics are applied to measure both modularity and stability prop-

erties in three different software product lines (with different re-

leases) and the measurements obtained are pairwise compared to

test whether those metrics are correlated and to find an answer

for our main question.

The rest of the paper is organized as follows. Section 2 briefly

introduces the conceptual framework that supports the study by

providing a method to identify crosscutting properties at require-

ments level. Section 3 presents the settings for our empirical study

by introducing the hypothesis established, the measures used and

the systems considered. Section 4 shows the results obtained and

it discusses their interpretation according to our main hypothesis.

Section 5 presents an evaluation of the metrics in order to select

the most representative for future studies. Section 6 presents the

threats to validity for this study. Finally, Section 7 discusses the

related work and Section 8 concludes the paper.

2. Background

A concern is an interest, which pertains to the system’s de-

velopment, its operation or any other matters that are critical or

otherwise important to one or more stakeholders (van den Berg

et al., 2005). The term concern is closely related to the term fea-

ture (used in the Software Product Line context) in the sense of be-

ing a prominent or distinctive user-visible aspect, quality, or char-

acteristic of a software system or systems (Kang et al., 1990). Soft-

ware modularity is mainly determined by the concept of Sepa-

ration of concerns (Dijkstra, 1976), the design principle that pro-

poses the proper encapsulation of systems’ concerns into separate

entities. One of the main advantages of separation of concerns is

the significant reduction of dependencies between these features

or concerns. However, concern independence is not always fully

achieved and modularity anomalies arise usually occasioned by the

well-known concern properties of scattering, tangling and cross-

cutting. Crosscutting (usually described in terms of scattering and

tangling) denotes the situation where a concern may not be com-

pletely encapsulated into a single software component but spread

over several artifacts and mixed with other concerns due to a poor

support for its modularization (van den Berg et al., 2005).

In order to detect these modularity anomalies, crosscutting

identification approaches come to the scene. Next section intro-

duces our previous work where a conceptual framework for identi-

fying and characterizing crosscutting properties was proposed. This

framework was independent of any particular software develop-

ment stage. Therefore, it may be applied at stages previous to im-

plementation, e.g. at requirements stage.

2.1. A conceptual framework for analysing modularity anomalies

In Conejero (2010) a conceptual framework was presented

where formal definitions of concern properties, such as scattering,

tangling, and crosscutting, were provided. This framework is based

on the study of trace dependencies that exist between two differ-

ent domains. These domains, which are generically called Source

and Target, could be, for example, concerns and requirements de-

scriptions, respectively or features and use cases in a different sit-

uation. We use the term Crosscutting Pattern (Fig. 1) to denote

the situation where Source and Target are related to each other

by means of trace dependencies.

From a mathematical point of view, the Crosscutting Pattern

indicates that the Source and Target domains are related to each

other by a mapping. This mapping is the trace relationship that

exists between the Source and Target domains, and it can be for-

malized as follows:

According to Fig. 1 , there exists a multivalued function f’ from

Source to Target domain such that if f’(s) = t , then there exists a

trace relation between s є Source and t є Target . Analogously, we

can define another multivalued function g’ from Target to Source

Download English Version:

https://daneshyari.com/en/article/6885294

Download Persian Version:

https://daneshyari.com/article/6885294

Daneshyari.com

https://daneshyari.com/en/article/6885294
https://daneshyari.com/article/6885294
https://daneshyari.com

