
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Controversy Corner

Unusual events in GitHub repositories

Christoph Treude⁎,a, Larissa Leiteb, Maurício Anichec

a School of Computer Science, University of Adelaide, Adelaide, Australia
bUniversitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
c Software Engineering Research Group, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Awareness
Unusual events
GitHub

A B S T R A C T

In large and active software projects, it becomes impractical for a developer to stay aware of all project activity.
While it might not be necessary to know about each commit or issue, it is arguably important to know about the
ones that are unusual. To investigate this hypothesis, we identified unusual events in 200 GitHub projects using a
comprehensive list of ways in which an artifact can be unusual and asked 140 developers responsible for or
affected by these events to comment on the usefulness of the corresponding information. Based on 2,096 an-
swers, we identify the subset of unusual events that developers consider particularly useful, including large code
modifications and unusual amounts of reviewing activity, along with qualitative evidence on the reasons behind
these answers. Our findings provide a means for reducing the amount of information that developers need to
parse in order to stay up to date with development activity in their projects.

1. Introduction

As part of their work, software developers create, modify, and delete
many artifacts in any given day. While some of these artifacts follow
regular patterns (e.g., an issue is closed by a new commit addressing the
issue, or a pull request is merged quickly after a few code review
comments), others are unusual: A difficult issue might take a particu-
larly long time to address, a controversial pull request might attract an
unusually large number of comments, and a disruptive commit might
add or delete a lot of files at once.

For any developer participating in a large and active software pro-
ject, it quickly becomes impossible to stay aware of all commits, issues,
or pull requests that are being created or edited. Arguably, it is also not
necessary to be aware of all details happening in a codebase or issue
tracking system, and tools such as dashboards (Treude and
Storey, 2010) or event feeds (Fritz and Murphy, 2011) have been de-
signed to abstract away some of the details. In addition to the high-level
awareness afforded by such tools, other tools have been proposed to
bring developers’ attention to activities in a project that have the po-
tential of impacting them directly, such as Brun et al.’s
Crystal (Brun et al., 2011) or WeCode (Guimarães and Silva, 2012) by
Guimarães and Silva. However, these tools are very specific and provide
little information about the project in general.

In a recent study (Treude et al., 2015) investigating the information
that developers would like to be kept aware of, unusual events emerged
from our qualitative data analysis as a major theme. In fact, we coded

121 out of 156 responses to be related to unusual events or one of its
sub-codes. Our work identified a few anecdotal examples of such
unusual events, namely an unusually long time between commits by a
particular developer, an unusual commit message, or changes to a large
number of files. Based on the answers (examples of unusual events that
developers are interested in), we hypothesize that developers are in-
terested in unusually large or small values for commit- and issue-related
metrics (by generalizing the examples). In this work, we provide a
systematic empirical investigation of the hypothesis that developers
want to be kept aware of such events in their repositories.

Given the amount of data available in repositories on hosting sites
such as GitHub, there is a large number of ways in which an artifact can
be unusual. For example, a commit might delete an unusually large
number of lines of code, an issue might have an unusually large number
of labels, or a pull request might have an unusually large number of
commits associated to it. In fact, in this work we found that more than
half of all commits in a sample of 200 GitHub projects could be con-
sidered as unusual according to at least one metric, considering a
comprehensive list of metrics that we defined based on previous work
and the data available through the GitHub API.

However, we do not claim that all the different ways in which an
artifact could be considered as unusual provide useful information to
developers. In contrast, the goal of this work is to enumerate the subset
of unusual events that developers consider useful to be kept aware of
and to identify the reasons why some types of unusual events are useful
to know about and others are not. We define an unusual event as an

https://doi.org/10.1016/j.jss.2018.04.063
Received 5 October 2017; Received in revised form 28 March 2018; Accepted 29 April 2018

⁎ Corresponding author.
E-mail addresses: christoph.treude@adelaide.edu.au (C. Treude), larissaleite@gmail.com (L. Leite), m.f.aniche@tudelft.nl (M. Aniche).

The Journal of Systems & Software 142 (2018) 237–247

Available online 04 May 2018
0164-1212/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.04.063
https://doi.org/10.1016/j.jss.2018.04.063
mailto:christoph.treude@adelaide.edu.au
mailto:larissaleite@gmail.com
mailto:m.f.aniche@tudelft.nl
https://doi.org/10.1016/j.jss.2018.04.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.04.063&domain=pdf


artifact that is unusual in at least one way (e.g., a commit with an
unusually large number of files added), and an unusual event type as one
way in which an artifact could be considered unusual (e.g., unusually
large number of files added in a commit). One artifact could be unusual
according to more than one unusual event type at any point in time. In
this work, we consider commits, issues, and pull requests as artifacts,
since they are the main artifacts on GitHub capturing developer ac-
tivity.

To achieve our research goal of identifying the set of unusual event
types that developers consider useful to be kept aware of, we presented
140 developers from 200 randomly sampled GitHub projects with a list
of unusual events we had detected in their projects and asked them to
rate the usefulness of the corresponding information. Based on a total of
2,096 ratings of different unusual events by the developers that were
directly responsible for and/or affected by these unusual events and
their reasoning, we compiled a list of types of unusual events that de-
velopers want to be kept aware of.

In particular, we investigated the following research questions:

RQ1 How are unusual events perceived by developers?
RQ1.1 Are unusual events perceived differently by developers?
RQ1.2 How do developers perceive artifacts affected by particular
types of unusual events?

RQ2 Which types of unusual events do developers find most useful
and why?
RQ2.1 Which types of unusual events do developers find most
useful?
RQ2.2 Why do developers consider types of unusual events useful
or not useful, respectively?

We found that information on unusual events in terms of number of
lines of code deleted, added, and modified in a commit was considered
particularly useful, along with the number of comments on issues and
pull requests as well as the duration for which an issue had been open.
These are also the types of unusual events that belong to artifacts
perceived as difficult.

The contributions of this work are:

• A list of types of unusual events that developers want to be kept
aware of, based on empirical evidence,

• the reasons for including and excluding specific unusual event types
from this list,

• Data from 200 randomly sampled GitHub projects about the fre-
quency of unusual events and their types, and

• An investigation to what extent different types of unusual events
correlate with perceived difficulty and typicality of an artifact.

The remainder of this paper is structured as follows: Section 2
provides motivating examples for this work. In Section 3, we detail our
sampling method for GitHub projects and we provide our definition of
unusual events. Section 4 provides empirical data on how frequently
the various unusual events occur in GitHub projects. Section 5 presents
our research questions and methodology, before Section 6 presents the
findings which are discussed in Section 7. Section 8 highlights the
limitations, and Section 9 summarizes related work. We conclude the
paper and outline future work in Section 10.

2. Motivating examples

RxSwift1 is a GitHub project that ports ReactiveX, an API for
asynchronous programming with observable streams, to Swift. When
we downloaded its data, the repository contained 1605 commits, 352
issues, and 443 pull requests. A typical issue on RxSwift is closed after

being open for less than 5 days (median: 4.65 days, first quartile: 21.74
hours, third quartile: 16.20 days). Considering these numbers, issue
#206 is unusual: more than 10 weeks passed between the moment it
was opened and the moment it was closed. When we pointed this out to
one of RxSwift’s contributors, they stated: “I think the info is really useful
actually, having a long standing issue could [... ] be an indicator of a dif-
ficult issue”.

Another project we analyzed for this work is LaTeXML,2 a converter
for LaTeX to XML, HTML, and other formats. The corresponding re-
pository contained 4520 commits, 675 issues, and 119 pull requests
when we downloaded its data. Out of the 675 issues, 21 were labeled
with wontfix. These issues usually did not attract much discussion: the
median number of comments for these 21 issues was 2, with the first
quartile at 1 and the third quartile at 3.5. Issue #724 is unusual in this
regard with 13 comments. When we asked one of LaTeXML’s con-
tributors about this unusual event, they responded: “In this case it in-
dicates an interesting discussion that spans beyond the concrete issue”.

Finally, the Elixir repository3 on GitHub hosts a dynamic, functional
language for building scalable and maintainable applications, with
11,548 commits, 2402 issues, and 2696 pull requests at the time of our
data download. Issue #3413 is unusual in terms of time between open
and closed with a duration of almost 11 months, considering all issues
in this project assigned to GitHub user josevalim. This user typically
closes issues in less than 7 days (median: 6.94 days, first quartile: 21.26
hours, third quartile: 36.21 days). Given these numbers, one of his
colleagues commented: “This information is useful. Knowing José [... ]
closes issues quickly makes it appear that this was a difficult problem”.

The goal of our work is to provide developers with useful insights
such as the ones illustrated in these examples through a systematic
investigation of different types of unusual events and their perceived
usefulness.

3. Projects and definition of unusual

In this section, we explain our method for sampling GitHub projects
and the definition of unusual used in this work.

3.1. Project selection

To systematically investigate awareness of unusual events, we ran-
domly selected 200 original projects (excluding forks) from GitHub,
limiting our sample to those projects that had at least 500 commits and
at least 100 pull requests or 100 issues. The threshold of 500 commits
had been used in previous work (e.g., Aniche et al., 2016) to filter out
pet projects and small experiments developers host on GitHub. The
additional filter on the number of issues and pull requests ensures that
projects use at least one of these mechanisms to manage their devel-
opment work.

To conduct the project selection, we randomly selected GitHub
projects from the entire population of GitHub projects until we had 200
projects that fulfilled our criteria.4 During this process, we disregarded
129,860 projects because they did not have enough commits and not
enough issues or pull requests, 118,873 projects because they were
forks, 1335 projects because they did not have enough issues or pulls
(but enough commits), and 350 projects because they did not have
enough commits (but enough issues or pull requests). In addition, we
disregarded 94 projects that had been imported to GitHub using Goo-
gleCodeExporter (i.e., their issue information was from Google Code
rather than GitHub), we disregarded one project because it was a book
writing project rather than a software project, and we disregarded one

1 https://github.com/ReactiveX/RxSwift.

2 https://github.com/brucemiller/LaTeXML.
3 https://github.com/elixir-lang/elixir.
4 We performed the random selection by randomly selecting GitHub project IDs be-

tween 1 and 70,000,000 and testing whether the corresponding projects fulfilled our
sampling criteria.

C. Treude et al. The Journal of Systems & Software 142 (2018) 237–247

238

https://github.com/ReactiveX/RxSwift
https://github.com/brucemiller/LaTeXML
https://github.com/elixir-lang/elixir


Download English Version:

https://daneshyari.com/en/article/6885301

Download Persian Version:

https://daneshyari.com/article/6885301

Daneshyari.com

https://daneshyari.com/en/article/6885301
https://daneshyari.com/article/6885301
https://daneshyari.com

