
The Journal of Systems and Software 139 (2018) 14–31

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Using reliability risk analysis to prioritize test cases

Ying Wang

a , Zhiliang Zhu

a , Bo Yang

a , Fangda Guo

b , Hai Yu

a , ∗

a Software College, Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, PR China
b School of Computer Science and Engineering, Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, PR China

a r t i c l e i n f o

Article history:

Received 31 May 2017

Revised 4 January 2018

Accepted 22 January 2018

Available online 2 February 2018

Keywords:

Regression testing

Test case prioritization

Probabilistic risk analysis

Information flow

Complex network

a b s t r a c t

In this paper, we present a risk-based test case prioritization (Ri-TCP) algorithm based on the transmis-

sion of information flows among software components. Most of the existing approaches rely on the his-

torical code changes or test case execution data, few of them effectively use the system topology infor-

mation covered by test cases when scheduling the execution of test cases. From the perspective of code

structure, the proposed algorithm firstly maps software into an information flow-based directed network

model. Then, functional paths covered by each test case are represented by a set of barbell motifs. Fi-

nally, combining with probabilistic risk analysis (PRA) and fault tree model, we assign a priority to each

test case by calculating the sum of risk indexes of all the barbells covered by it. Experimental results

demonstrate that Ri-TCP technique has a higher detection rate of faults with serious risk indicators and

performs stably in different systems, compared with the other state-of-the-art algorithms.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Regression testing is an important guarantee for software qual-

ity, whose purpose is to ensure that the modifications in previ-

ous versions of software meet the users’ requirements (Kung et al.,

1996). In the life cycle of software testing, regression testing plays

a significant role, which approximately accounts for 50% of the to-

tal maintenance cost due to its high frequency of being executed

(Harrold, 2009). To improve the test efficiency and reduce test ef-

fort, testers might schedule test cases in an order according to

some criterion to make the critical test cases be executed preferen-

tially, this is so called “test case prioritization technique” (Elbaum

et al., 2001b; Wong et al., 1997).

A test case is a set of test inputs, execution conditions, and

expected results developed for a particular objective, such as to

exercise a particular program path or to verify compliance with

a specific requirement. Test cases are the cornerstones of quality

assurance where they are developed to verify the quality and be-

havior of a product (IEEE, 2010). Test case prioritization technique

aims to achieve code coverage at the fastest rate possible, increase

assurance in reliability of the system at a faster rate, or improve

the fault detection ability of test case suite during the testing pro-

cess (Marchetto et al., 2016). A higher fault detection rate can pro-

vide earlier feedback on the system under test, enable earlier de-

∗ Corresponding author.

E-mail addresses: wangying8052@163.com (Y. Wang), zzl@mail.neu.edu.cn (Z.

Zhu), yb9506@126.com (B. Yang), yuhai@mail.neu.edu.cn , yuhai@126.com (H. Yu).

bugging, and increase the likelihood that, if the testing period is

cut short, test cases that offer the greatest fault detection capacity

in the available testing time will have been executed (Hao et al.,

2016).

Numerous algorithms are proposed to address the test case pri-

oritization problem. Of these, code-based prioritization techniques

have drawbacks when dealing with large-scale software because

of the statement and block level information is hard to manage

(Ma and Zhao, 2008). The structural complexity-based prioritiza-

tion strategy is to assign weights to classes based on the complex-

ity of system topology, and then prioritize the test cases with the

goal of maximizing the total or additional covered indicators. How-

ever, they ignored the information transmission relationships be-

tween classes that are covered by test cases. Thus, approaches to

scheduling test cases by comprehensively analyzing the coverage

information are valuable.

Risk analysis theory is successfully applied to software test-

ing field, to improve productivity and reduce the costs of testing.

The approaches Redmill (20 05) , Redmill (20 04) , Felderer and Ram-

ler (2013) , Felderer et al. (2012) and Amland (20 0 0) addressed risk-

based testing at a general level. Redmill (20 05, 20 04) emphasized

the human and organizational factors. Employing risk as the ba-

sis for test planning did not provide a formula for perfection. Test

planners must retain responsibility, but informed use of risk could

provide illuminating guidance. Felderer and Ramler (2013) and

Felderer et al. (2012) showed a model-based approach to risk-

based testing, with the focus on product risks affecting the qual-

ity of the product itself. In Felderer and Ramler (2013) , they pre-

https://doi.org/10.1016/j.jss.2018.01.033

0164-1212/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2018.01.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.01.033&domain=pdf
mailto:wangying8052@163.com
mailto:zzl@mail.neu.edu.cn
mailto:yb9506@126.com
mailto:yuhai@mail.neu.edu.cn
mailto:yuhai@126.com
https://doi.org/10.1016/j.jss.2018.01.033

Y. Wang et al. / The Journal of Systems and Software 139 (2018) 14–31 15

sented a generic risk-based testing methodology and a procedure

how it can be introduced in a test process. Based on this proce-

dure, four stages of risk-based test integration were derived, i.e.,

initial risk-based testing, risk-based test reporting, risk-based test

planning, and optimization of risk-based testing. Risk-based testing

has a high potential to improve the software development and test

process as it helps to optimize the allocation of resources and pro-

vides decision support for the management (Amland, 20 0 0). Thus,

considering risk indicators when prioritizing the test cases is es-

sential for improving test efficiency.

In this paper, we propose a strategy combining three reliability

risk factors – dynamic execution probability, fault-proneness and

failure consequence – to schedule test cases to be executed. By

equating the functional invocations with the transmissions of in-

formation flow, the software system is mapped into a class-level

directed network model. Based on the complex network theory,

we decompose the functional paths into a series of barbell mo-

tifs which consists of a class node pair and an information trans-

mission relationship contained therein. With the aid of the fault

tree model, we quantitatively analyze all the state events caused

by the failure of each barbell motif in the system. Then, the risk

index covered by test case is treated as a basis for ordering their

execution. By comparing with the other state-of-the-art techniques

based on several case studies, we show that the proposed approach

performs better in effectiveness and stability across different soft-

ware systems. The main contributions of this approach are sum-

marized as follows.

• A class-level directed network model based on information flow

for analyzing communication relationships between modules of

software.
• An evaluation scheme for quantifying the risk indexes of classes

in the system using the PRA model.
• A measurement to assess the risk coverage of test cases com-

bining fault tree analysis and barbell motifs.
• A comprehensive comparison with previous studies from the

perspective of detection rate of faults with high risk index.

The remainder of this paper is organized as follows.

Section 2 discusses related research and Section 3 introduces

the Ri-TCP technique. In Section 4 , an evaluation indicator is

described. In Section 5 , we provide a comparison with previous

research and discuss the experiment results. Finally, we give our

conclusion in Section 6 .

2. Related work

2.1. Test case prioritization techniques

Considering the coverage information as a target, test case pri-

oritization techniques produce an optimal order for maximizing

the coverage rate of certain factor (e.g., branch coverage, decision

coverage, or statement coverage) as early as possible (Do et al.,

2010). Rothermel et al. (2001) transformed the test case prioriti-

zation problem into a solution of searching the optimal order from

all possible permutations of test cases. Its formalized definition is

described as follows:

Definition 1. Test case prioritization problem. Given a test suite T ,

the set PT consisting of all the permutations of test cases in T , and

a function f from PT to the set of real numbers, find a T ′ ∈ PT such

that (∀ T ′ ′)(T ′ ′ � = T ′)[f (T ′) ≥ f (T ′ ′)].
Yoo and Harman (2012) surveyed the area of prioritization tech-

nique and discussed open problems and potential directions for fu-

ture research. According to their paper, we categorized the existing

approaches into four types: coverage-based prioritization, interac-

tion testing, cost-aware test case prioritization and prioritization

approaches based on other criteria.

Coverage-based prioritization. By analyzing the static call

graphs of JUnit test cases and the program under test,

Mei et al. (2012) prioritized the test cases in the absence of

coverage information operating on Java programs tested under

the JUnit framework. As dynamic coverage-based techniques use

actual coverage information while their approach used estimated

coverage information, the former was intuitively better than

the latter in terms of fault-detection effectiveness. However, by

avoiding the need to instrument code and execute test cases, this

approach might be more applicable than dynamic coverage-based

approaches in cases where gathering coverage information was

inappropriate or was not cost effective.

Jeffrey and Gupta (2006) proposed a test case prioritization

technique based on the coverage requirements presented in the

relevant slices of the outputs of test cases. They called this

approach the “REG+OI+POI” heuristic strategy for prioritization,

where REG, denotes REGular statement (branches) executed by the

test case, OI denotes the Output Influencing and POI denotes the

Potentially Output Influencing statements (branches) executed by

the test case. The experimental results suggested that accounting

for relevant slicing information, along with information about the

modifications traversed by each test case, had potential when used

as part of the test case prioritization process.

Interaction testing. Interaction testing is required when system

under test involves multiple combinations of different components.

Bryce and Memon (2007) also applied the principles of interaction

coverage to the test case prioritization of event-driven software.

They extended the notion to t -way interactions over sequences of

events. Prioritization by interaction coverage of events improved

the rate of fault detection in half of our experiments. The test

suites that include the largest percentage of 2-way and 3-way in-

teractions had the fastest rate of fault detection when prioritized

by interaction coverage.

Previous studies used in tools to generate software interac-

tion test suites have been evaluated on criteria of accuracy, execu-

tion time, consistency, and adaptability to seeding and constraints.

Bryce and Colbourn (2005) prioritized interaction test cases based

on user specified importance. For example, an operating system

with a larger user base might be more important than one with

a smaller user base. After weighting each level value for each fac-

tor, they calculated the combined benefit of a given test by adding

the weights of each level value selected for the test.Computational

results suggest that the greedy methods for constructing biased

covering arrays could be useful when testers desire a prioritized

ordering of tests.

Cost-aware test case prioritization. Yoo et al. (2009) introduced

a test case prioritization technique, which can significantly reduce

the required number of pair-wise comparisons by clustering test

cases. The paper demonstrated that clustering without input pa-

rameters could outperform unclustered coverage-based technolo-

gies, and discussed an automated process that could be used to de-

termine whether the application of the proposed approach would

yield improvement.

Walcott et al. (2006) presented a regression test prioritization

technique that used a genetic algorithm to reorder test suites in

light of testing time constraints. Experiment results indicated that

our prioritization approach frequently yields higher average per-

centage of faults detected (APFD) values, for two case study ap-

plications, when basic block level coverage was used instead of

method level coverage. The experiments also revealed fundamental

trade-offs in the performance of time-aware prioritization.

Prioritization approaches based on other criteria. Elbaum et al.

(20 01b, 20 01a) performed a series of experiments to explore how

the three factors-program structure, test suite composition, and

change characteristics-affect the fault detection rate of test suites.

Using a multiple regression model, they illustrate which metric

Download English Version:

https://daneshyari.com/en/article/6885327

Download Persian Version:

https://daneshyari.com/article/6885327

Daneshyari.com

https://daneshyari.com/en/article/6885327
https://daneshyari.com/article/6885327
https://daneshyari.com

