
The Journal of Systems and Software 139 (2018) 32–50

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Requirements engineering: A systematic mapping study in agile

software development

Karina Curcio, Tiago Navarro, Andreia Malucelli, Sheila Reinehr ∗

Graduate Program in Computer Science (PPGIa), Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Brazil

a r t i c l e i n f o

Article history:

Received 19 December 2016

Revised 16 December 2017

Accepted 24 January 2018

Available online 31 January 2018

Keywords:

Agile software development

Requirements engineering

Systematic mapping study

a b s t r a c t

Context: Requirements engineering in agile software development is a relatively recent software engi-

neering topic and it is not completely explored and understood. The understanding of how this process

works on agile world needs a deeper analysis.

Objective: The goal of this paper is to map the subject area of requirements engineering in agile context

to identify the main topics that have been researched and to identify gaps to develop future researches.

It is also intended to identify the obstacles that practitioners face when using agile requirements engi-

neering.

Method: A systematic mapping study was conducted and as a result 2171 papers were initially identified

and further narrowed to 104 by applying exclusion criteria and analysis.

Conclusion: After completing the classification and the analysis of the selected studies it was possible to

identify 15 areas (13 based on SWEBOK) where researches were developed. Five of such areas points to

the need of future researches, among them are requirements elicitation, change management, measuring

requirements, software requirements tools and comparative studies between traditional and agile require-

ments. In this research, some obstacles that practitioners face dealing with requirements engineering in

agile context were also identified. They are related to environment, people and resources.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Since the agile manifesto was released a lot of research has

been intensively developed to explore the agile software develop-

ment (Dybå and Dingsøyr, 2008; Diebold and Dahlem, 2014). The

agile manifesto stated some values like “individual and interactions

over process and tools, working software over comprehensive docu-

mentation, customer collaboration over contract negotiation, respond-

ing to change over following a plan” (Agile Manifesto: Manifesto for

Agile Software Development 2001).

All of these values add flexibility and consequently agility to

the software development process. However, recent studies in-

dicate high rates of projects failure, including those that are

using agile processes. According to a study published by the

Standish Group (2014) about the results of software projects, five

of the eight top projects cancellation factors are related to require-

ments. Incomplete requirements, low customer involvement, unre-

alistic expectations, changes in requirements and unnecessary re-

quirements were listed as the main factors.

∗ Corresponding author.

E-mail addresses: malu@ppgia.pucpr.br (A. Malucelli), sheila.reinehr@pucpr.br (S.

Reinehr).

So, the question that remains is how to deal with it? The an-

swer should be inside of requirements engineering area. In tra-

ditional requirements engineering some sequential activities are

developed during five specific phases: elicitation, analysis, docu-

mentation, validation and verification phases (Kotonya and Som-

merville, 1997). During all these phases it is necessary to manage

the requirements. What is already known is that in the traditional

development life cycle, all of these activities are done during the

analysis phase of the software development life cycle. It is easy to

imagine this occurring when a plan-driven approach is adopted,

but when an agile approach is adopted all activities and phases

described on traditional requirements engineering are not so clear.

Agile requirements engineering (RE) activities are not sequential

but are iterative and are performed during each of the several

short development cycles [S1]. Requirements engineering in agile

development is informal and based on the skills and knowledge

of individuals (Dingsøyr et al., 2012). It is difficult to describe or

characterize the agile requirements engineering because it is still

cloudy, not only for software developers but for the research com-

munity too. The software development community as a whole is

still unfamiliar with the role of the requirements engineering prac-

tices in agile methods (Inayat et al., 2015).

https://doi.org/10.1016/j.jss.2018.01.036

0164-1212/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2018.01.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.01.036&domain=pdf
mailto:malu@ppgia.pucpr.br
mailto:sheila.reinehr@pucpr.br
https://doi.org/10.1016/j.jss.2018.01.036

K. Curcio et al. / The Journal of Systems and Software 139 (2018) 32–50 33

Fig. 1. Waterfall model based on Sommerville (2001) .

Motivated by this perception, the goal of this study is to ex-

plore the agile requirements engineering and bring to light more

discussions promoted by literature foundations. To attend this goal

it is intended to create a clear and objective way of visualizing the

results instigating those who intend to follow this line of research.

At the beginning of the research it was noticed that the field of

this research is very broad and we need to find a way to promote

adequate visibility of the results, focusing on the extensions of the

areas that the agile requirements engineering can achieve rather

than its depth. As described by Kitchenham and Charters (2007) a

systematic mapping study allows the evidence in a domain to be

plotted at a high level of granularity. Systematic mapping stud-

ies or scoping studies are designed to give an overview of a re-

search area through classification and counting contributions in re-

lation to the categories of that classification (Petersen et al., 2008).

It provides a structure of the type of research reports and results

that have been published by categorizing them. It often gives a vi-

sual summary, the map, of its results (Petersen et al., 2008). To

make the results emerge correctly and to reduce the bias of this

research a systematic mapping methodology was applied. The re-

search questions that we aimed to answer are the following:

1) On which requirements engineering topics are the researches

on requirements engineering in agile software development

concentrated?

2) What are the gaps concerning the requirements engineering in

the context of agile software development?

3) What obstacles do the agile requirements engineering is facing

(environment, people and resources)?

2. Theoretical background

Requirements engineering is concerned with identifying, mod-

eling, communicating and documenting the requirements of a sys-

tem and the context in which the system will be used [S2]. The

use of the term “engineering” implies that systematic and repeat-

able techniques should be used to ensure that system require-

ments are complete, consistent and relevant (Kotonya and Som-

merville, 1997). A requirement engineering process is a structural

set of activities, which are followed to derive, validate, and main-

tain a system requirements document. In this section we will pro-

vide the theoretical background about requirements engineering in

order to have a better understanding of the research context.

2.1. Traditional requirements engineering process

The term “traditional requirements engineering” is based on

the waterfall life cycle model, which emerged in 1970s. In this

approach all process for developing a system are executed in a

sequential order, in which progress is seen as flowing steadily

downwards through the phases of: requirements definition, sys-

tem and software design, implementation and unit testing, in-

tegration and system testing and operation and maintenance

(Sommerville, 2001). The representation of this model can be seen

in Fig. 1 .

In traditional requirements engineering a number of processes

for gathering requirements in accordance with the needs and de-

mands of the users are involved and all of them are executed dur-

ing the requirements definition phase. The process begins with the

elicitation activity where requirements and the system boundaries

are discovered through the stakeholders. In this phase many tech-

niques can be used, such as prototyping, brainstorming, interviews

and use cases [S3]. Then the requirements analysis and negotiation

activities start to get a better understanding of the whole business

and to check if the elicited requirements are consistent, complete

and feasible. Sometimes, during these activities, the requirements

can be modeled to make them clearer for the developers. It is also

possible to prioritize the requirements to satisfy some limitations

such as time, resources or technical capabilities.

In the documentation activity the requirements are written and

become a baseline for specifying all types of functional and non-

functional requirements. The next activity in the sequence is the

validation. The validation checks if the requirements statements

are consistent and if they satisfy costumer’s needs. Test cases

are also used in this phase to reveal the ambiguities and vague-

ness in written requirements [S3]. To support these activities a re-

quirements management process should be introduced to manage

changes to the requirements during all prior presented phases.

In waterfall approach it is normal to freeze parts of the de-

velopment such as the specification (Sommerville, 2001). Problems

are left for later resolution, ignored or programmed around and it

may bring some problems like badly structured systems.

2.2. Agile requirements engineering

Differently from the traditional requirements engineering the

term “agile requirements engineering” is recent and emerged from

the agile manifesto in 2001, as the agile software development

started to be explored. During the agile manifesto twelve principles

were stated and one of them was directly related to requirements:

Download English Version:

https://daneshyari.com/en/article/6885329

Download Persian Version:

https://daneshyari.com/article/6885329

Daneshyari.com

https://daneshyari.com/en/article/6885329
https://daneshyari.com/article/6885329
https://daneshyari.com

