
The Journal of Systems and Software 139 (2018) 142–160

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A framework for semi-automated co-evolution of security knowledge

and system models

Jens Bürger a , ∗, Daniel Strüber a , Stefan Gärtner b , Thomas Ruhroth

a , Jan Jürjens a , d ,
Kurt Schneider c

a University of Koblenz-Landau, Universitätsstraße 1, 56070, Koblenz, Germany
b adesso AG, Stockholmer Allee 200, 44269 Dortmund, Germany
c Lebniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
d Fraunhofer ISST, Emil-Figge-Straße 91, 44227 Dortmund, Germany

a r t i c l e i n f o

Article history:

Received 1 April 2017

Revised 20 December 2017

Accepted 5 February 2018

Available online 6 February 2018

Keywords:

Security requirements

Software evolution

Co-evolution

Software design

Security impact analysis

a b s t r a c t

Security is an important and challenging quality aspect of software-intensive systems, becoming even

more demanding regarding long-living systems. Novel attacks and changing laws lead to security issues

that did not necessarily rise from a flawed initial design, but also when the system fails to keep up with

a changing environment. Thus, security requires maintenance throughout the operation phase. Ongoing

adaptations in response to changed security knowledge are inevitable. A necessary prerequisite for such

adaptations is a good understanding of the security-relevant parts of the system and the security knowl-

edge.

We present a model-based framework for supporting the maintenance of security during the long-term

evolution of a software system. It uses ontologies to manage the system-specific and the security knowl-

edge. With model queries, graph transformation and differencing techniques, knowledge changes are an-

alyzed and the system model is adapted. We introduce the novel concept of Security Maintenance Rules

to couple the evolution of security knowledge with co-evolutions of the system model.

As evaluation, community knowledge about vulnerabilities is used (Common Weakness Enumeration

database). We show the applicability of the framework to the iTrust system from the medical care do-

main and hence show the benefits of supporting co-evolution for maintaining secure systems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Security and privacy are critical success factors for software-

intensive systems. Security flaws and data breaches may impair

customer satisfaction and sales revenues, while entailing a high

cost for flaw repair and compensations. Even if a system is built

with great effort s to shield against the security 1 threats known at

the time of its initial deployment, a challenging situation arises

when the system is to be maintained for an extensive lifetime.

Such long-living systems are particularly prone to security issues,

since assumptions and design decisions made during their de-

∗ Corresponding author.

E-mail addresses: buerger@uni-koblenz.de (J. Bürger), strueber@uni-koblenz.de

(D. Strüber), stefan.gaertner@adesso.de (S. Gärtner), ruhroth@uni-koblenz.de (T.

Ruhroth), kurt.schneider@inf.uni-hannover.de (K. Schneider).

URL: http://jan.jurjens.de (J. Jürjens)
1 In this paper, we consider privacy as a security aspect, acknowledging the on-

tological debate around these terms.

velopment may be invalidated when the environment changes:

due to newly discovered attack types, increasingly ambitious se-

curity laws, and continuously evolving stakeholder requirements,

employed security mechanisms may become obsolete.

Therefore, an achieved level of security must be actively main-

tained during the long-term evolution of a system.

For these reasons, it is crucial to support developers during

the detection and repair of security flaws after the environment

changes. It is desirable to enable automated support for these

tasks as far as possible, relieving developers from unnecessary bur-

den, while involving them whenever their input is necessary. From

this goal, three main challenges arise. First, the automated detec-

tion of security flaws requires to leverage available knowledge on

security threats. This knowledge needs to be managed explicitly

and updated continuously, since it is subject to constant change.

Second, to identify security flaws in a specific system when the

context knowledge is updated, its security requirements need to

be accounted for. To support the automated validation of these

https://doi.org/10.1016/j.jss.2018.02.003

0164-1212/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2018.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.02.003&domain=pdf
mailto:buerger@uni-koblenz.de
mailto:strueber@uni-koblenz.de
mailto:stefan.gaertner@adesso.de
mailto:ruhroth@uni-koblenz.de
mailto:kurt.schneider@inf.uni-hannover.de
http://jan.jurjens.de
https://doi.org/10.1016/j.jss.2018.02.003

J. Bürger et al. / The Journal of Systems and Software 139 (2018) 142–160 143

requirements, they need to be maintained in a machine-readable

form. Third, whenever violations of security requirements are de-

tected, an immediate reaction becomes necessary: parts of the sys-

tems affected by vulnerabilities need to be identified; a suitable

countermeasure needs to be determined and suggested to the se-

curity expert.

To address these challenges, in this paper, we present the

SecVolution approach. The overall aim of SecVolution is to sus-

tain the security of long-living systems whenever environmen-

tal changes have an impact on security properties. Our approach

comprises three main components.

• Security Context Knowledge is expressed in terms of a layered

ontology that allows the evolution of Security Context Knowl-

edge to be managed and expressed in a formal manner. A cen-

tral component of the layered ontology is an upper ontology of

security-relevant concepts and their relationships.
• To detect threats in the system automatically whenever the

Security Context Knowledge evolves, we enable the specifica-

tion of Essential Security Requirements (ESRs). ESRs are amenable

to an automated analysis against the Security Context Knowl-

edge. To establish traceability between identified threats and

the knowledge changes that provoked them, the analysis takes

the difference deltas of the Security Context Knowledge as an

input.
• Semi-automated reactions to co-evolve the security knowledge

and the respective system models are specified using Security

Maintenance Rules . As part of a Security Maintenance Rule, we

employ model transformation rules to specify the system model

evolution. A major benefit of this approach is that it can iden-

tify parts of the system models affected by security flaws auto-

matically.

With this paper, we continue our ongoing work on the SecVo-

lution approach (Ruhroth et al., 2014; Bürger et al., 2015), ex-

tending our earlier works in three main directions. First, the up-

per ontology presented here extends the one from our earlier

work (Ruhroth et al., 2014) considerably by incorporating the

results of a systematic literature review, allowing a more ex-

act specification of security properties. Second, in our earlier

work (Bürger et al., 2015), Essential Security Requirements were

specified in natural language. With our new formalized notion of

Essential Security Requirements, we provide a missing concept to

enable an automated analysis of security requirements. Third, the

aforementioned analysis, based on the formalized Essential Secu-

rity Requirements and the Security Context Knowledge deltas, al-

lows to detect potential threats in the system and map them to

specific system artifacts.

To evaluate the extended SecVolution approach, we present a

case study involving the open-source system iTrust. iTrust is a

medical information system that fits well into our security setting.

As the evolution context, we use the privacy legislation of the

European Union and Germany, comprising a set of privacy acts that

have been changed repeatedly in the past years. Therefore, this set-

ting is adequate to show the power of our approach in a realis-

tic evolution scenario. The changes in the privacy legislation trig-

gered changes in the underlying knowledge structure. The knowl-

edge changes in turn called for changes to the system model of

iTrust for recovering compliance to the privacy legislation. In sum,

the evaluation shows the feasibility of our approach to identify se-

curity issues reliably and generate semi-automated reactions to se-

curity flaws.

The remainder of this paper is structured as follows: In

Section 2 , we sketch the SecVolution approach and define the

scope of the research presented in this paper as well as relevant

research questions. The evolution of environmental knowledge and

a heuristic method to determine its impact on natural-language re-

quirements is explained in Section 3.1 . Based on this impact, the

adaptation (or co-evolution) of the system model to retain a de-

sired level of security is explained in Section 3.2 and Section 3.3 .

To evaluate our approach, we conducted a qualitative case study

in Section 4 and discuss our results and insights. For this purpose,

we used the medical care application iTrust . Related research in the

field of security requirements and knowledge evolution as well as

model co-evolution is listed in Section 5 . In Section 6 , we conclude

our work and outline future research.

2. SecVolution approach and research challenges

According to Lehman and Ramil (2003) , software evolution is

the ongoing progressive change of software artifacts in one or more

of their attributes over time. Progressive in this context means that

the change results in improvement of the corresponding software.

Each change preserves most properties (e.g. functionality and se-

curity) of the former system and is justified by a rationale. But

changes may also lead to the emergence of new properties. Thus,

evolution is caused by a wide variety of environmental changes

such as technological changes, new stakeholders’ needs, modified

requirements and assumptions, changes in laws, rules as well as

regulations, corrections of discovered problems and many others.

Maintaining security of information systems by taking into account

a continuously changing environment is therefore a challenging

task in software engineering.

The term co-evolution is used in software engineering to de-

scribe the change of artifacts in response to a change in another

artifact (cf. Mitleton-Kelly and Papaefthimiou, 2002). If artifact A

evolves in response to changes in artifact B, B is called the causal

artifact and A the effect artifact. Thus, co-evolution is the result

of cause-effect changes between software artifacts. One reason for

co-evolution is based on the fact that software artifacts depend on

each other.

2.1. Overview of the SecVolution approach

The SecVolution approach is a holistic framework to deal with

evolving knowledge in the environment of a software project. The

overall goal is to restore security levels of an information system

when changes in the environment put security at risk.

The SecVolution approach is the result of continuing research

and extending the SecReq approach developed in our previous

work (Houmb et al., 2009; Schneider et al., 2011; Jürjens and

Schneider, 2014). As a core feature, SecReq supports reusing se-

curity engineering experience gained during the development of

security-critical software and feeding it back into the model-based

development process. To this end, SecReq combines three dis-

tinctive techniques to support security requirements elicitation

as well as modeling and analysis of the corresponding system

model: (1) Common Criteria (International Standardization Organi-

zation, 2007) and its underlying security requirements elicitation

and refinement process, (2) the HeRA tool (Knauss et al., 2009)

with its security-related heuristic rules, and (3) the UMLsec tool

set (Jürjens, 2005) for secure system modeling and security anal-

ysis. This bridges the gap between security best practices and the

lack of security experience among developers. However, a signifi-

cant limitation of SecReq is that it cannot cope with evolution of

the required security knowledge and, thus, has to be regarded as a

“one–shot” security approach.

In SecVolution, to overcome this limitation of SecReq, the sys-

tem’s environment is monitored to infer appropriate adaptation

operations. Fig. 1 depicts an overview of the resulting approach in

the focus of this publication. Inputs to the approach are specifica-

tion documents like (security) requirements, use cases, and misuse

Download English Version:

https://daneshyari.com/en/article/6885338

Download Persian Version:

https://daneshyari.com/article/6885338

Daneshyari.com

https://daneshyari.com/en/article/6885338
https://daneshyari.com/article/6885338
https://daneshyari.com

