
The Journal of Systems and Software 137 (2018) 67–77

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

New deep learning method to detect code injection attacks on hybrid

applications

Ruibo Yan

a , Xi Xiao

a , Guangwu Hu

b , ∗, Sancheng Peng

c , Yong Jiang

a

a Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
b School of Computer Science, Shenzhen Institute of Information Technology, Shenzhen, China
c School of Informatics, Guangdong University of Foreign Studies, Guangzhou, China

a r t i c l e i n f o

Article history:

Received 25 November 2016

Revised 8 September 2017

Accepted 3 November 2017

Available online 14 November 2017

Keywords:

Code injection

Hybrid application

Abstract syntax tree

Deep learning

a b s t r a c t

Mobile phones are becoming increasingly pervasive. Among them, HTML5-based hybrid applications are

more and more popular because of their portability on different systems. However these applications

suffer from code injection attacks. In this paper, we construct a novel deep learning network, Hybrid

Deep Learning Network (HDLN), and use it to detect these attacks. At first, based on our previous work,

we extract more features from Abstract Syntax Tree (AST) of JavaScript and employ three methods to

select key features. Then we get the feature vectors and train HDLN to distinguish vulnerable applications

from normal ones. Finally thorough experiments are done to validate our methods. The results show our

detection approach with HDLN achieves 97.55% in accuracy and 97.60% in AUC , which outperforms those

with other traditional classifiers and gets higher average precision than other detection methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Mobile applications (apps) are gaining significant popularity as

mobile devices are getting more and more popular. The smart

phone is not only a communication tool employed by users and

business, but also a means of planning and organizing people’s

work and private life. More and more researchers focus on mobile

apps Bagheri et al. (2016) . Therefore, mobile security has become

increasingly important in mobile computing Xiao et al. (2012) .

Among all the mobile operating systems, Android is open-source

and has accounted for around 85 percent of all smartphone sales

worldwide in the beginning of 2016 (Global mobile os market

share in sales to end users from 1st quarter 2009 to 1st quarter

2016, 2017). Android is so popular, so in this paper, we mainly fo-

cus on Android, but the idea can also be applied to other mobile

operating systems.

A hybrid application is one that combines elements of both na-

tive and HTML5 applications. There are three main mobile operat-

ing systems, Android, iOS and Windows Phone. Traditionally, in or-

der to develop mobile apps running on different systems, develop-

ers have to use different programming languages and Application

Program Interfaces (APIs), which costs much effort. While using a

∗ Corresponding author.

E-mail addresses: yrb15@mails.tsinghua.edu.cn (R. Yan), xiaox@sz.tsinghua.

edu.cn (X. Xiao), hu.guangwu@sz.tsinghua.edu.cn , huguangwu@gmail.com (G. Hu),

psc346@aliyun.com (S. Peng), jiangy@sz.tsinghua.edu.cn (Y. Jiang).

hybrid application framework which supports cross-platform mo-

bile app development, developers can easily build hybrid apps for

different mobile operating systems with HTML, CSS and JavaScript.

Hybrid HTML5 application development gains more and more mo-

mentum in mobile industry because of its convenience in de-

veloping cross-platform apps. There are many hybrid application

frameworks, such as Phonegap (2017) , which utilize functions of

web (2017) . It can display web pages and execute JavaScript func-

tions. Since JavaScript code and data can be mixed together in web

technology, once the malicious JavaScript code is injected and exe-

cuted by JavaScript engine through some channels, the code injec-

tion attack (Jin et al., 2014b) happens in the hybrid apps. In this

paper, our purpose is to judge whether a hybrid application has

code injection vulnerabilities. The idea can be applied in mobile

application markets, such as Google Play market. If a hybrid appli-

cation has code injection vulnerabilities, we can tell the enterprise

who owns the application to avoid financial loss and user privacy

leaking.

The code injection attack also happens in PC web applications,

which is called “Cross Site Scripting” (XSS). The code injection at-

tack in hybrid apps inherits the fundamental cause of XSS, but it

uses many more channels to inject malicious code than XSS. These

channels are unique in mobile devices, including Contact, SMS, Bar-

code, MP3 metadata, etc. The code injection attack on HTML5-

based apps is firstly proposed in Jin et al. (2014b) and explained in

depth in Jin et al. (2014a). The work in Jin et al. (2014a) adopted

static data-flow analysis to detect these attacks. It got the precision

https://doi.org/10.1016/j.jss.2017.11.001

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.001&domain=pdf
mailto:yrb15@mails.tsinghua.edu.cn
mailto:mailto:xiaox@sz.tsinghua.edu.cn
mailto:hu.guangwu@sz.tsinghua.edu.cn
mailto:huguangwu@gmail.com
mailto:psc346@aliyun.com
mailto:jiangy@sz.tsinghua.edu.cn
https://doi.org/10.1016/j.jss.2017.11.001

68 R. Yan et al. / The Journal of Systems and Software 137 (2018) 67–77

of 97.7%. But it costs much time. We proposed classification meth-

ods of machine learning to judge whether an application is vulner-

able Xiao et al. (2015) . Our previous method reduced the time but

only obtained the precision of 95.3%.

In this paper, we employ a novel deep learning network, Hybrid

Deep Learning Network (HDLN) to detect these attacks. At first,

based on our previous work, we extract more features from Ab-

stract Syntax Tree of JavaScript and use three methods to select

key features. Then on the basis of feature vectors, HDLN is trained

to distinguish vulnerable applications from normal ones by thor-

ough experiments. The results show our detection approach with

HDLN achieves the overall accuracy of 98.12%, superior to those

with other traditional classifiers and gets higher average precision

than the other detection methods (Jin et al., 2014a; Xiao et al.,

2015).

Our contributions primarily lie in the following aspects. First of

all, we develop a novel deep learning network, Hybrid Deep Learn-

ing Network (HDLN), and use it to detect the code injection vulner-

ability in hybrid applications. Our method improves both the pre-

cision and accuracy and performs far more better than the method

in Xiao et al. (2015) . Second, we extract new features from the

AST of JavaScript in a hybrid application and use information gain,

Chi-square test and document frequency to select key features.

Third, we extend our dataset and conduct comprehensive experi-

ments with different feature selection methods and different net-

work structures and the results show the extended features and

the feature selection methods can improve the detection perfor-

mance.

Compared to our previous work (Xiao et al., 2015), at first we

add n-grams generated from the AST of JavaScript as new fea-

tures and use three methods to choose key features. Furthermore,

a novel deep learning network, Hybrid Deep Learning Network

(HDLN) is used to do the detection. In addition, thorough exper-

iments are conducted to test our new network in this work.

The rest of the paper is organized as follows. In Section 2 ,

we describe the background of code injection attacks. The detec-

tion model including HDLN is explained in detail in Section 3 . In

Section 4 , we discuss the results of different experiments and pro-

vide an overview of related work in Section 5 . At last, we conclude

this paper and suggest future work in Section 6 .

2. Background

It is well known that there is a dangerous characteristic in the

web technology: it allows data and code to be mixed together. So

hybrid apps developed by web technologies may have code injec-

tion vulnerabilities. In this section, we first describe technologies

related to the code injection attack. Then we introduce Abstract

Syntax Tree from which we extract features. Finally, we state deep

learning neural networks.

2.1. Code injection in hybrid applications

There are three types of mobile applications: Native apps,

HTML5 apps and Hybrid apps. Native apps are specific to a

given mobile operating system using the specific programming

language and Software Development Kit (SDK) that the respec-

tive platform supports. HTML5 apps are developed with standard

web technologies-HTML5, JavaScript and CSS. This write-once-run-

anywhere approach creates cross-platform mobile apps that run

on multiple platforms. A hybrid application is one that combines

elements of both native and HTML5 applications. Hybrid apps em-

bed HTML5 apps inside a thin native container, combining the best

of both the native and HTML apps. There are many frameworks

that allow developers to create hybrid apps easily. Among them,

Phonegap (2017) is the most popular one which uses the functions

of WebView web (2017) . There is an API addJavaScriptInterface() in

WebView to allow the JavaScript code to call the native Java code.

If an application has declared the required permissions, the app

can access the system resources by calling the responding native

code. PhoneGap does this work for developers, it provides many

plugins in JavaScript language for developers to access system re-

sources.

Since it allows data and JavaScript code to be mixed together in

the web technology, code injection attacks can happen in hybrid

apps. For example, when a user uses a hybrid application to scan

a barcode and the content of the barcode is a piece of malicious

JavaScript code to constantly send the user’s locations to a specific

server, the malicious code is injected and executed by JavaScript

engine, and the user’s location privacy is stolen by attackers. A

hybrid application with code injection vulnerabilities should sat-

isfy two conditions: firstly, the hybrid application reads unsafe data

from outside or inside the device, such as scanning barcodes, Con-

tacts and so on; secondly, the hybrid application shows the unsafe

data with unsafe JavaScript APIs, such as “document.write()”.

There are many channels for code injection attacks on hy-

brid apps. Besides the web channel, there are some data chan-

nels unique to mobile devices, such as barcodes, RFID tags and

SMS messages, metadata of multimedia files and ID channels. A

more hidden code injection attack based on JavaScript coding is

proposed in Xiao et al. (2015) , the conclusion is that JavaScript

Unicode coding, JavaScript hexadecimal coding and JavaScript oc-

tal coding are suitable for code injection.

2.2. Abstract syntax tree

In computer science, an Abstract Syntax Tree is a tree represen-

tation of the abstract syntactic structure of source code written in

a programming language Abstract syntax tree (2017) . Each node of

the tree represents a construct in the source code. In other words,

the AST is a structured description of the source code, which can

be used to do static analysis on JavaScript code. Esprima (2017) is

a high performance, standard-compliant JavaScript parser written

in JavaScript to extract the AST from JavaScript code. Suppose we

have the following piece of JavaScript code in List 1 , let us see how

to generate the AST.

We treat the above JavaScript code as a string and pass it to “es-

prima.parse”. Subsequently, the AST in JavaScript Object Notation

(JSON) format is obtained. We program to parse the JSON string

and transform it into an abstract syntax tree like Fig. 1 . In this

tree, there are six paths from the root node to leaves. The six paths

are called as path0, path1, path2, path3, path4 , and path5. path0

is “Program VariableDeclaration VariableDeclarator Identifier”. The

remained five paths are in the same format as path0 . The height of

the tree in Fig. 1 is 5 and the width is 3.

2.3. Deep learning neural networks

Artificial neural network is firstly proposed and consequently

deep learning frameworks such as convolutional neural network

and recurrent neural network are developed. Artifical Neural Net-

work (ANN) model is proposed by McCulloch and Pitts (1943) . Ar-

tificial neural neworks are typically organized in layers. The neu-

rons of the input layer, hidden layers and the output layer are fully

Listing 1. JavaScript code.

Download English Version:

https://daneshyari.com/en/article/6885357

Download Persian Version:

https://daneshyari.com/article/6885357

Daneshyari.com

https://daneshyari.com/en/article/6885357
https://daneshyari.com/article/6885357
https://daneshyari.com

