
The Journal of Systems and Software 137 (2018) 130–142

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Scalable code clone detection and search based on adaptive prefix

filtering

Manziba Akanda Nishi ∗, Kostadin Damevski

Department of Computer Science, Virginia Commonwealth University, United States

a r t i c l e i n f o

Article history:

Received 27 June 2017

Revised 21 September 2017

Accepted 17 November 2017

Available online 20 November 2017

MSC:

00-01

99-00

Keywords:

Code clone detection

Prefix filtering

Software maintenance

a b s t r a c t

Code clone detection is a well-known software engineering problem that aims to detect all the groups of

code blocks or code fragments that are functionally equivalent in a code base. It has numerous and wide

ranging important uses in areas such as software metrics, plagiarism detection, aspect mining, copyright

infringement investigation, code compaction, virus detection, and detecting bugs. A scalable code clone

detection technique, able to process large source code repositories, is crucial in the context of multi-

project or Internet-scale code clone detection scenarios. In this paper, we focus on improving the scala-

bility of code clone detection, relative to current state of the art techniques. Our adaptive prefix filtering

technique improves the performance of code clone detection for many common execution parameters,

when tested on common benchmarks. The experimental results exhibit improvements for commonly used

similarity thresholds of between 40% and 80%, in the best case decreasing the execution time up to 11%

and increasing the number of filtered candidates up to 63%.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Developers introduce clones in a code base mainly when

reusing existing code blocks without significant alteration, or when

certain code blocks are implemented by developers following a

common mental macro (Roy and Cordy, 2007; Baxter et al., 1998;

Kamiya et al., 2002). Researchers have shown that developers

tend to perform software maintenance tasks more effectively when

they have the results of code clone detection (Chatterji et al.,

2013,2011). Empirical studies have noted that code clones are

widespread, and that a significant portion of source code (between

5% and 20%) is copied or modified from already implemented code

fragments or blocks (Roy and Cordy, 2007, 2008a; Baker, 1995).

Performing code clone detection across numerous software

repositories is a common use case. Specific applications for large

scale code clone detection include querying library candidates

(Ishihara et al., 2012), categorizing copyright infringement and li-

cense violations (Koschke, 2012; German et al., 2009), plagiarism

detection (German et al., 2009; Koschke, 2012), finding product

lines in reverse engineering (Hemel and Koschke, 2012; German

et al., 2009), tracing the origin of a component (Davies et al., 2011),

searching for code blocks in large software repositories (Yamashina

et al., 2008; Keivanloo et al., 2011a), and spotting analogous appli-

∗ Corresponding author.

E-mail addresses: nishima@mymail.vcu.edu (M.A. Nishi), kdamevski@vcu.edu (K.

Damevski).

cations in Android markets (Chen et al., 2014; Sajnani et al., 2016).

However, most existing code clone detection techniques have dif-

ficulty scaling up to extremely large collections of source code

(Svajlenko et al., 2013; Roy et al., 2014).

Among the tools aimed towards large scale code clone de-

tection, a common limitation is in the complexity of differences

among clones they can detect. For instance, scalable token based

approaches (Kamiya et al., 2002; Hummel et al., 2010; Ishihara

et al., 2012) have difficulty detecting near miss (Type-3) code

clones, which can occur more frequently than other types of clones

(Roy et al., 2014; Roy and Cordy, 2010; Svajlenko et al., 2014). Par-

allel and distributed clone detection techniques like D-CCFinder

(Livieri et al., 2007) can be more burdensome to manage, requiring

specialized hardware or software support, while tree based code

clone detection technique, such as Deckard (Jiang et al., 2007),

place higher demands on memory.

In this paper, we propose a token-based code clone detection

technique aimed at scalability and detecting Type-3 clones, con-

sisting of two main steps: filtering and verification. In the filtering

step we aim to significantly reduce the number of code blocks for

comparison, removing from consideration blocks that do not have

any possibility of being code clones. In the verification step we de-

termine whether candidate pairs that survived the filtering step

are really code clones. This two step process greatly reduces the

runtime of code clone detection, allowing the technique to scale

up to very large corpora. This technique is based on the adaptive

prefix filtering heuristic (Wang et al., 2012), which is an extended

https://doi.org/10.1016/j.jss.2017.11.039

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.11.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.039&domain=pdf
mailto:nishima@mymail.vcu.edu
mailto:kdamevski@vcu.edu
https://doi.org/10.1016/j.jss.2017.11.039

M.A. Nishi, K. Damevski / The Journal of Systems and Software 137 (2018) 130–142 131

version of prefix filtering heuristic (Sarawagi and Kirpal, 2004; Ver-

nica et al., 2010) previously applied towards code clone detection

in SourcererCC (Sajnani et al., 2016). To our knowledge, Sourcer-

erCC is the best scaling code clone detection tool able to detect

Type-3 clones. In this paper, we demonstrate improvements in ex-

ecution time relative to SourcererCC, while obtaining the same ac-

curacy, for many common similarity thresholds, when evaluated

on a large scale inter-project source code corpus (Ambient Soft-

ware Evoluton Group, 2017).

A separate novel idea presented in this paper is the effective

application of our technique to code clone search, without modi-

fication, in addition to code clone detection. Code clone search is

a related problem to code clone detection where the user speci-

fies a single code block (i.e. query block) to search for in a corpus

of many code blocks. Once indexed, the corpus should be able to

serve numerous such queries. Ours is among few techniques that

can be applied to both of these problems. The contributions of this

paper are the following:

• A novel code clone detection technique that can scale to very

large scale source code repositories (or sets of repositories)

with the ability to detect Type-1, Type-2, and Type-3 code

clones, while maintaining high precision and recall.
• An extension of our proposed technique so that it can be effec-

tively utilized for code clone search without modification.

We have organized the rest of this paper as follows.

Section 2 describes the background and related work in both code

clone detection and code clone search. Section 3 describes the

adaptive prefix filtering heuristic, which we utilized in our code

clone detection approach. Section 4 describes the design of a code

clone detection system based on our technique, which includes

several necessary optimization steps. Section 5 describes the ex-

perimental results evaluating our proposed approach, as well as a

comparison to the recent code clone detection tool SourcererCC.

Section 6 concludes the paper, summarizing it’s contributions.

2. Background and related work

Based on the nature of the similarity between code blocks, the

software engineering community has identified four types of code

clones, by which code clone detection techniques can be organized.

Syntactically equivalent code blocks are called Type-1 clones. Type-

2 code clones are code blocks that are syntactically comparable

but are slightly contrasting in terms of variable names, function

names, or identifier names. If two code blocks contain statements

that have been inserted, altered, expunged, there is a gap in state-

ments, or statement order differs, then these are called Type-

3 clones. Semantically equivalent code blocks are called Type-4

clones (Sajnani et al., 2016).

Scaling code clone detection to work across multiple repos-

itories is a specific area of interest among researchers. Popu-

lar and notable examples of large-scale code clone detection

include CCFinderX (Kamiya et al., 2002), which is one of the

foremost token based code clone detection tools able to scale

up to large repositories and detect Type-1 and Type-2 code

clones. In Hummel et al. (2010) , an inverted index-based approach

was first proposed, detecting Type-1 and Type-2 clones. Deckard

(Jiang et al., 2007) is another tool that aims to scale to large

source code repositories. It uses a tree-based data structure and

detects clones by identifying similar subtrees and is able to de-

tect up to Type-3 code clones. NiCad (Cordy and Roy, 2011) is a

scalable code clone detection tool that can detect Type-3 clones

using a technique based on parsing, normalization and filtering.

When compared using similar execution parameters, CCFinderX

scales up to 100 million lines of code, Nicad scales up to 10 mil-

lion lines of code, while Deckard scales up to 1 million lines of

code (Sajnani et al., 2016).

Parallel, distributed or online (i.e. incremental) techniques add

another dimension in examining scalable code clone detection

technique. For instance, iClone (Göde and Koschke, 2009) is the

first incremental code clone detection technique that detects code

clones in the current version of code repository by leveraging exe-

cutions on previous versions of the same repository. It uses a suf-

fix tree-based and token-based approach that can detect Type-1

and Type-2 code clones. A scalable distributed code clone detection

tool named D-CCFinder was proposed in Livieri et al. (2007) , which

can scale code clone detection in a distributed environment to de-

tect Type-1 and Type-2 clones. In Svajlenko et al. (2013) a scalable

code clone detection technique has been introduced where input

files are partitioned into smaller subsets and a shuffling framework

is utilized to allow the clone detection tool to execute on each of

the subsets separately, enabling it to detect code clones in parallel.

Recently, the SourcererCC (Sajnani et al., 2016) code clone de-

tection tool proposed a token-based prefix filtering code clone de-

tection technique, which greatly reduces the number of candi-

date code clone pairs, enabling it to detect up to Type-3 clones

in Internet-scale source code repositories. SourcererCC is the best

scaling tool on a single machine that we are aware of. The ap-

proach described in this paper extends SourcererCC with an adap-

tive approach that allows for even greater gains in performance for

large-scale source code datasets.

SourcererCC is based on two filtering heuristics, prefix filtering

and token position filtering, which reduce the number of candidate

pairs that require costly pairwise comparison of all of their tokens

(Sarawagi and Kirpal, 2004; Vernica et al., 2010). These two filter-

ing heuristics attempt to rapidly, with few token comparisons, de-

tect pairs of code blocks that diverge very significantly from each

other. To perform this task, a subset (or prefix) is isolated in each

of the two code blocks, where if there are no matching tokens in

the subsets then we can safely reject them as a candidate pair,

without proceeding further, and without attempting to compare

all of their tokens. On the other hand, a single matching token in

the subset allows the pair to proceed to further scrutiny as a code

clone.

Recently, an extremely scalable code clone detection tool

VUDDY (Kim et al., 2017) has been presented. VUDDY’s purpose is

to detect vulnerable code clones for security improvement. While

VUDDY has been shown to be significantly faster than SourcererCC

it is designed to only detect Type-1 and Type-2 code clones. So

far, the precision and recall of VUDDY has only been evaluated for

relatively few instances of code with security vulnerabilities.

Wang et al. (2012) recently proposed an additional filtering

heuristic to those used in SourcererCC, called adaptive prefix fil-

tering . This technique posits that deeper prefix lengths, which at-

tempt more aggressive filtering at a higher performance cost, can

achieve good performance on some types of input. An adaptive

prefix filtering technique attempts to estimate the right level of fil-

tering for each candidate by optimizing the trade-off between the

cost of deeper filtering with the benefit of reducing the number

of candidates. This paper applies adaptive prefix filtering to code

clone detection, and evaluates it’s adequacy.

2.1. Code clone search

Code clone search is a related area of research where a single

code block is supplied as a query to be matched in large source

code corpus, retrieving a list of code clones. Code clone search

requires the source code to be pre-indexed, and for the similar-

ity threshold between the query block and it’s clones to be spec-

ified at query time, instead of, at indexing time. This twist makes

it challenging for typical code clone detection to be used without

Download English Version:

https://daneshyari.com/en/article/6885361

Download Persian Version:

https://daneshyari.com/article/6885361

Daneshyari.com

https://daneshyari.com/en/article/6885361
https://daneshyari.com/article/6885361
https://daneshyari.com

