
The Journal of Systems and Software 137 (2018) 163–183

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A Metrics Suite for code annotation assessment

Phyllipe Lima

a , ∗, Eduardo Guerra

a , Paulo Meirelles b , c , Lucas Kanashiro

b , Hélio Silva

a ,
Fábio Fagundes Silveira

d

a National Institute For Space Research – INPE, Brazil
b University of São Paulo – IME-USP, Brazil
c University of Brasília – FGA-UnB, Brazil
d Federal University of São Paulo – ICT-UNIFESP, Brazil

a r t i c l e i n f o

Article history:

Received 2 February 2017

Revised 9 October 2017

Accepted 9 November 2017

Available online 2 December 2017

Keywords:

Code annotation

Software metrics

Thresholds

a b s t r a c t

Code annotation is a language feature that enables the introduction of custom metadata on programming

elements. In Java, this feature was introduced on version 5, and today it is widely used by main enterprise

application frameworks and APIs. Although this language feature potentially simplifies metadata configu-

ration, its abuse and misuse can reduce source code readability and complicate its maintenance. The goal

of this paper is to propose software metrics regarding annotations in the source code and analyze their

distribution in real-world projects. We have defined a suite of metrics to assess characteristics of the

usage of source code annotations in a code base. Our study collected data from 24947 classes extracted

from open source projects to analyze the distribution of the proposed metrics. We developed a tool to

automatically extract the metrics and provide a full report on annotations usage. Based on the analysis

of the distribution, we defined an appropriate approach for the calculation of thresholds to interpret the

metric values. The results allow the assessment of annotated code characteristics. Using the thresholds

values, we proposed a way to interpret the use of annotations, which can reveal potential problems in

the source code.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Code annotations were introduced in version 5 of the Java lan-

guage as a feature that adds custom metadata on programming el-

ements, such as methods and classes. This metadata can be con-

sumed by tools or frameworks to gather additional information

about the software, allowing the execution of more specific behav-

ior. The code annotations proximity to the source code makes it a

simple and fast alternative for metadata configuration.

The relevance of code annotations as a programming language

feature can be seen by its usage in Java APIs for enterprise applica-

tions (JSR, 2007). For instance, EJB API uses annotations to config-

ure transactions and security constraints, and JPA API applies an-

notations for object-oriented mapping. A study performed in 2011

(Rocha and Valente, 2011) verified that from 106 projects of the

Qualitas Corpus project database (Tempero et al., 2010), 65 projects

used annotations, showing that it is a widely adopted feature in

Java source code.

∗ Corresponding author.

E-mail addresses: eduardo.guerra@inpe.br (E. Guerra), paulormm@ime.usp.br (P.

Meirelles),

lkd@ime.usp.br (L. Kanashiro), fsilveira@unifesp.br (F.F. Silveira).

Despite that annotations had a great potential for many inter-

esting applications, its misuse can harm the maintenance of a soft-

ware and prevent its evolution. For instance, an excessive amount

of annotations can reduce code readability, and annotations dupli-

cated through the project might be hard to refactor. Even the cou-

pling of a class with an annotation schema can prevent its usage

outside the application context.

Metrics are a way to retrieve information from software to as-

sess its characteristics. For instance, well-known techniques use

metrics associated with rules to enable the detection of bad smells

on the source code (Lanza and Marinescu, 2006; Van Rompaey

et al., 2007). However, traditional code metrics does not recognize

the existence of annotations on programming elements, which can

lead to an incomplete code assessment (Guerra et al., 2009). For

example, a domain class can be considered simple using current

complexity metrics. However, it can contain complex annotations

for object-relational mapping. Another example is that the usage

of a set of annotations couples the application to a framework that

can interpret them. Current coupling metrics does not explicitly

handle this situation.

The goal of this paper is to define metrics to assess the use

of annotations in the source code. Additionally, this work also in-

vestigates how these metrics behave in open source projects by

https://doi.org/10.1016/j.jss.2017.11.024

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.11.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.024&domain=pdf
mailto:eduardo.guerra@inpe.br
mailto:paulormm@ime.usp.br
mailto:lkd@ime.usp.br
mailto:fsilveira@unifesp.br
https://doi.org/10.1016/j.jss.2017.11.024

164 P. Lima et al. / The Journal of Systems and Software 137 (2018) 163–183

analyzing their distributions. Based on the frequency distribution

for each one (Meirelles, 2013), we proposed an approach to de-

fine thresholds that can be used to separate values as very fre-

quent, frequent, or less frequent. These thresholds can be used to

identify uncommon annotation usage scenarios and reveal poten-

tial problems in the software implementation. These might prevent

its evolution and maintenance. Thresholds values can also be used,

for example, to create bad smells detection strategies (Lanza and

Marinescu, 2006).

In short, there is no rule of thumb saying what type of distri-

bution source code metrics it belongs to. In this paper, such in-

formation is relevant to determine the statistical value (average,

median, or a percentile) that should be taken into consideration

to monitor the proposed metrics. As shown throughout this re-

search, there is no consensus in the distribution of source code

metrics for object-oriented programming. Therefore, we wish to

conceive our annotation metrics with a complete statistical analy-

sis of their behavior by using real-world projects. For that, we use

the approach proposed by Lanza and Marinescu (2006) as well as

our approach based on percentile rank empirical analysis, adapted

from Meirelles (2013) . This percentile rank analysis is a tool to aid

in interpreting the annotation metric presented in this paper.

An Eclipse IDE plugin named Annotation Sniffer was developed

to extract the proposed annotation metrics from Java code. The

metrics values are presented to the user as a complete report in

an XML document, which is rendered to a web page by using an

XSLT file. A total of 24947 Java classes obtained from open source

projects that used annotations were selected and evaluated apply-

ing this plugin. The XML files were processed by scripts that gen-

erated the values distribution used to find suitable thresholds for

each metric. Based on the findings, a discussion is conducted about

how these metrics can be used to assess characteristics that can

reveal relevant information about the annotations usage in a Java

project.

The remainder of this paper is organized as follows.

Section 2 introduces the concept of code annotations.

Section 3 shows the related studies discussing software met-

rics analysis and arguing that previous works could provide a

more complete assessment based on annotation metrics proposed

in this paper. Section 4 presents the research design of this

study discussing our research questions and methods as well as

explaining our approach to collect and analyze the proposed code

annotation metrics. Section 5 introduces the proposed techniques

to assess the characteristics of an annotated code, in short, a

candidate metrics suite for code annotation assessment. In the

sequence, Section 6 summarizes a statistical analysis and a discus-

sion of code annotation metrics distribution, as well as it presents

our proposal approach for thresholds calculation for the candidate

metrics suite. Finally, Section 7 concludes the paper, highlighting

its main contributions and pointing paths to future works.

2. Metadata Configuration using Code Annotations

“Metadata” is an overloaded term in computer science and can

be interpreted differently according to the context. Considering

object-oriented programming, metadata is information about the

program itself, such as classes, methods, and attributes. A class

metadata, for example, is composed of its name, its superclass, its

interfaces, its methods, and its attributes.

Some tools or frameworks can consume metadata and exe-

cute routines based on class structure. For instance, it can be

used for source code generation (Damyanov and Holmes, 2004),

compile-time verifications (Ernst, 2008; Quinonez et al., 2008),

class transformation (Lombok, 2016), and framework adaptation

(Guerra et al., 2010c). Sometimes, only the class structure is not

enough to provide substantial information to be utilized else-

where. It is necessary to configure additional custom metadata

to parametrize how each programming element should be inter-

preted.

One option to define custom metadata is to use external stor-

age, such as an XML file or a database (Fernandes et al., 2010).

The drawback of this approach is the distance between the meta-

data and the referenced element, which adds some verbosity since

a complete path to the referenced element must be provided. An-

other alternative, which is used by some frameworks, like Ruby on

Rails (Ruby et al., 2009), is to define additional information using

code conventions (Chen, 2006). Although this choice can be very

productive in some contexts, code conventions have a limited ex-

pressiveness and cannot be used to define more complex metadata.

For instance, a code convention could be used to define a method

as a test method as in JUnit 3. However, it could not be used to

define a valid range of a numeric property as in Bean Validation

API.

Some programming languages provide features that allow cus-

tom metadata to be defined and included directly on program-

ming elements. This feature is supported in languages such as Java,

through the use of annotations (JSR, 2004), and in C#, by attributes

(Miller and Ragsdale, 2004). A benefit of this alternative is that

metadata definition is closer to the programming element and its

definition is less verbose than the external one. The usage of code

annotations is a technique called by some sources as attribute-

oriented programming (Schwarz, 2004), which is defined as a pro-

gramming technique used to mark software elements with annota-

tions to indicate application-specific or domain-specific semantics

(Wada and Suzuki, 2005).

In Java, this technique started with XDoclet (Walls and

Richards, 2003), a tool that retrieved metadata defined in the

source code as special JavaDoc tags. Those tags were applied to

generate source code and XML files, which, in most cases, are

metadata descriptors. This tool was widely employed in the de-

velopment of J2EE applications by applying the EJB standard until

version 2.1 (JSR, 2003) to generate extensive and mandatory XML

descriptors (Walnes et al., 2003).

Annotations became an official language feature in Java 1.5

(JSR, 2004) spreading, even more, the use of this technique by the

development community. Some base APIs in Java EE 6, like EJB 3.0

and JPA (JSR, 2007), use metadata in the form of annotations ex-

tensively. This native support to annotations encourages many Java

framework developers to adopt the metadata-based approach in

their solutions.

A single annotation defines only a small piece of information.

An annotation-based API usually uses a group of related annota-

tions that represent the set of metadata necessary for its usage. An

annotation schema can be defined as a set of related annotations

that belongs to the same API.

3. Related Works

Like any other language feature, annotations can bring bene-

fits to the application if appropriately used (Guerra and Fernan-

des, 2013), but it can also be misused. Therefore, it is important

to extract some metrics to help analyze how software is using this

resource. By evaluating the metrics, the developer might conclude

some potentially negative consequences of annotations.

Source code metrics help summarize particular aspects of soft-

ware elements, detecting outliers in large amounts of code. They

are valuable in software engineering since they enable develop-

ers to keep control of complexity, making them aware of abnormal

growth of certain characteristics of the system. Metrics aid devel-

opers in keeping control of the quality of the code. However, to

effectively take advantage of metrics, they should provide meanin-

ful information and not just numerical values.

Download English Version:

https://daneshyari.com/en/article/6885363

Download Persian Version:

https://daneshyari.com/article/6885363

Daneshyari.com

https://daneshyari.com/en/article/6885363
https://daneshyari.com/article/6885363
https://daneshyari.com

