
The Journal of Systems and Software 137 (2018) 217–238

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Compositional execution semantics for business process verification

Emmanouela Stachtiari ∗, Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 20 January 2017

Revised 1 November 2017

Accepted 4 November 2017

Available online 2 December 2017

Keywords:

Formal verification

Programming language semantics

WS-BPEL

BIP

a b s t r a c t

Service compositions are programmed as executable business processes in languages like WS-BPEL (or

BPEL in short). In such programs, activities are nested within concurrency, isolation, compensation and

event handling constructs that cause an overwhelming number of execution paths. Program correctness

has to be verified based on a formal definition of the language semantics. For BPEL , previous works

have proposed execution semantics in formal languages amenable to model checking. Most of the times

the service composition structure is not preserved in the formal model, which impedes tracing the ver-

ification findings in the original program. Here, we propose a compositional semantics and a structure-

preserving translator of BPEL programs onto the BIP component framework. In addition, we verify essen-

tial correctness properties that affect process responsiveness, and the compliance with partner services.

The scalability of the proposed translation and analysis is demonstrated on BPEL programs of various

sizes. Our compositional translation approach can be also applied to other executable languages with

nesting syntax.

© 2017 Published by Elsevier Inc.

1. Introduction

Businesses rely more and more on distributed, value-adding

software applications in order to offer enterprise functionality

to customers. Business Process Modeling (BPM) is a promising

paradigm for integrating software components into a single exe-

cutable unit, termed as process. The Service-Oriented Architecture

(SOA) suits to the BPM paradigm, with respect to the composition

of services into processes, which can be also deployed as services.

Among existing languages for the specification of such processes,

BPEL stands out by providing high-level primitives, and constructs

for the definition of complex synchronous and asynchronous web

service interactions. The used web services are autonomous and

loosely-coupled components that possibly span different organiza-

tions. For the wide adoption of business process programming, it

is essential to ensure reliability in order to avoid errors that may

cause critical losses to the involved organizations. Additionally, the

program has to fulfill correctness goals such as process responsive-

ness and compliance with partner services.

One approach towards ensuring reliability is by testing the pro-

cess with emulating its interactions (Sun et al., 2015). In this case,

an adequate coverage of the program’s control flow has to be

achieved by selecting the appropriate test inputs. On the other

∗ Corresponding author.

E-mail addresses: emmastac@csd.auth.gr (E. Stachtiari), katsaros@csd.auth.gr (P.

Katsaros).

hand, formal verification guarantees full coverage of execution

paths for all possible inputs. Such an analysis has to be based on a

formal specification of the language execution semantics, which in-

volves nesting of service interactions using concurrency, isolation,

compensation and event handling constructs.

Many works attempt to verify correctness by model checking

a formal model , which is an abstract representation of the ser-

vice composition program (Beek et al., 2007). However, the orig-

inal structure of the source program is not reflected in the for-

mal model, thus rendering impossible to exactly locate the veri-

fication findings in the program’s code. This is an inherent prob-

lem of most formalisms, which lack sufficiently expressive com-

position primitives for a model representation that preserves the

service composition structure. The BIP (Behavior, Interaction, Pri-

ority) component framework (Basu et al., 2011b) provides a min-

imal set of primitives adequate for preserving the service compo-

sition structure. It consists of an executable modeling language for

layered transition systems, which has formally defined operational

semantics and mathematically proven expressiveness (Bliudze and

Sifakis, 2008). The BIP models can be formally verified with the BIP

tools (BIP tools, 2017).

We use BIP to introduce a compositional semantics for BPEL ,

i.e. a semantics in which the processing for each BPEL construct is

placed locally to a corresponding BIP component. Such a definition

tackles the combinatorial problem of defining semantics for each

possible combination of nested BPEL constructs. Compositional se-

mantics can be defined for executable languages with nesting syn-

https://doi.org/10.1016/j.jss.2017.11.003

0164-1212/© 2017 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2017.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.003&domain=pdf
mailto:emmastac@csd.auth.gr
mailto:katsaros@csd.auth.gr
https://doi.org/10.1016/j.jss.2017.11.003

218 E. Stachtiari, P. Katsaros / The Journal of Systems and Software 137 (2018) 217–238

tax if the execution semantics of enclosing and nested constructs

can be defined independently from each other. To achieve such

a definition in our approach, the semantics of nesting constructs

are defined based on abstractions built-in by construction for the

nested ones, while the latter are combined using coordination

primitives that do not alter their semantics (just restrict their ex-

ecution traces). A structure-preserving translator into the BIP lan-

guage has been implemented that covers all activities of the BPEL

standard. The translator transforms the BPEL programs into BIP

models that contain the code needed for the verification of essen-

tial correctness properties. The check of whether the properties are

met takes place by exploration of the reachable state space. If a

property is violated, we are able to obtain a counterexample exe-

cution trace that contains the processing steps of BPEL activities,

which lead to the error location.

In Stachtiari et al. (2012) , we presented a first version of our

translator for a limited set of BPEL constructs with more emphasis

on the translation algorithm. The verification of a functional prop-

erty for a showcase application scenario was also demonstrated

along with evidence for its violation in the form of a counterex-

ample. Here, we expose:

• the complete execution semantics of BPEL through a new

methodology for compositional definition;
• the verification of a wide range of important correctness prop-

erties;
• the testing of our translator in mid-scale programs and their

verification.

We note that the translation times were found to have a statis-

tically significant linear relation to the number of states of the gen-

erated BIP model. The translator, the verification utilities for the

properties of interest, as well as the BPEL programs of our experi-

ments are available online in BPEL2BIP (2017) . Verification is only

one of the possible uses of our BPEL process models, which can

be also used e.g. for test case generation based on the produced

execution paths (Jehan et al., 2015). Moreover, in an independent

research work (Ben Said et al., 2016), our approach was extended

towards enabling the configuration of information flow policies for

BPEL processes. Finally, our BPEL process models can run as stan-

dalone web services on top of the BIP engine, after being enhanced

with runtime communication support (e.g. connections, dispatch-

ing) based on the architecture for SOAP-based web services that

we proposed in Stachtiari et al. (2014) .

In Section 2 , we discuss the design problems and the correct-

ness of BPEL processes through a motivating example. Section 3 in-

troduces the structure of our BIP model and the principles of the

compositional approach for the definition of the BPEL execution

semantics. These principles determine the interface and the be-

havior of BIP components, which allow implementing the seman-

tics of the various BPEL activities. Section 4 encodes the BPEL ex-

ecution semantics into safety properties that are enforced in our

model by construction . Our modeling approach covers all activities

of the BPEL standard, but the presentation is restricted to the most

important activities and details for more activities are exposed

in Appendix B . In Section 5 , we present the verification of essen-

tial correctness properties that have been previously introduced

in Section 2 and the formalization of additional useful correctness

properties. Section 6 discusses the principles of the translation of

BPEL programs in BIP. Section 7 shows results from the translation

and analysis of mid-scale BPEL applications and the paper con-

cludes with a critical review of the related work in Section 8 and

our remarks for the exposed contributions in Section 9 .

2. Correctness of BPEL processes: a motivating example

BPEL process implementations are based on web services (part-

ner links) whose interfaces expose service operations written in the

WSDL 1.1 language. Synchronous operations accept an input and

block the invoker for the output, or a fault, to be returned. On the

contrary, in asynchronous operations the invoker dispatches the in-

put and forgets it. Thus, through the use of two asynchronous op-

erations it is possible to apply a request-response interaction pat-

tern that does not block the invoker. In this approach, a service

is invoked with the first operation and the response is returned

with a second operation, referred to as callback , exposed by the

invoker. The use of asynchronous operations generally allows for

complex service interaction patterns, such as parallel operation in-

vocations, but it raises the need to effectively manage communi-

cation sessions , i.e. the stateful chains of dual service interactions.

The assignment of messages to the correct session takes place by

message correlation .

Atomic behavior in processes is realized with basic activities ,

such as the invoke , receive , and reply , which are used re-

spectively to (i) invoke, (ii) receive input, and (iii) send output (or

fault), with respect to specific service operations. Fig. 1 a and b

show the client-side and server-side activities used for a syn-

chronous (resp. an asynchronous) invocation of an operation x . A

client-side synchronous invocation is implemented by a request-

response invoke , while the asynchronous interaction relies on an

one-way invoke of x and a receive of the callback operation y .
Generally, the assign activity is used before sending and after re-

ceiving a message, in order to copy data between the message and

the process’s variables. BPEL ’s structured activities define work-

flows of activities, such as sequence , parallel flow , and other

conditional and repeatable structures. The scope activity defines

a local context for its enclosed activities, with its own data and

error handling through compensation, termination and fault han-

dlers. A scope also defines event handlers for incoming messages

and timeouts.

Example 1. A BPEL process for travel booking is presented in Fig. 2

with its activities shown in rectangular boxes. The activities for ser-

vice interactions are labeled with the invoked operations. The bold,

the thin and the dotted edges represent respectively relationships

for the order of execution, the containment of handlers and the

synchronization between activities.

The process provides to its clients the synchronous operation

get_itinerary that responds with an output or a fault message.

When a client wants to book a travel itinerary, a get_itinerary re-

quest is received along with the preferred hotel, room type and

flight details. Two scopes are then executed in parallel that com-

municate respectively with the HotelBookWS and AirlineBookWS

web services:

• The Hotel-booking scope invokes the asynchronous bookHotel

operation of HotelBookWS to reserve the chosen hotel room.

For this purpose, it uses an one-way invoke and contin-

ues its processing, while the response is pending. A receive
waits for the confirmation in the hotelBooked callback opera-

tion. When the confirmation is received, the synchronous pay-

Hotel operation of the HotelBookWS is invoked for the payment.

The progress of the whole process is then blocked on the syn-

chronous invoke , until the receipt of the expected response.

In parallel to the normal flow, the scope also has an event han-

dler that listens to requests for the noAvail operation. This is a

callback operation that is invoked by the HotelBookWS service,

if there is no availability for the chosen hotel room. Upon re-

ceipt of such a message, the event handler throws a bookFailed

fault.

Download English Version:

https://daneshyari.com/en/article/6885366

Download Persian Version:

https://daneshyari.com/article/6885366

Daneshyari.com

https://daneshyari.com/en/article/6885366
https://daneshyari.com/article/6885366
https://daneshyari.com

