
ARTICLE IN PRESS

JID: JSS [m5G; March 6, 2017;10:0]

The Journal of Systems and Software 0 0 0 (2017) 1–18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On early detection of application-level resource exhaustion and

starvation

Mohamed Elsabagh

∗, Daniel Barbará, Dan Fleck , Angelos Stavrou

George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o

Article history:

Received 29 March 2016

Revised 10 November 2016

Accepted 24 February 2017

Available online xxx

Keywords:

Resource exhaustion

Starvation

Early detection

Probabilistic finite automata

Kernel tracing

a b s t r a c t

Software systems are often engineered and tested for functionality under normal rather than worst-case

conditions. This makes the systems vulnerable to denial-of-service attacks, where attackers engineer con-

ditions that result in overconsumption of resources or starvation and stalling of execution. While the se-

curity community is well familiar with volumetric resource exhaustion attacks at the network and trans-

port layers, application-specific attacks pose a challenging threat. In this paper, we present Radmin, a

novel system for early detection of application-level resource exhaustion and starvation attacks. Radmin

works directly on compiled binaries. It learns and executes multiple probabilistic finite automata from

benign runs of target programs. Radmin confines the resource usage of target programs to the learned

automata and detects resource usage anomalies at their early stages. We demonstrate the effectiveness

of Radmin by testing it using a variety of synthetic and in-the-wild attacks. We provide a theoretical

analysis of the attacker’s knowledge of Radmin and provide a metric for the degree of vulnerability of a

program that is protected by Radmin. Finally, we also compare the accuracy and effectiveness of two dif-

ferent architectures, Radmin which works in both the user and kernel spaces, and URadmin which works

solely in user space.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Availability of services plays a major – if not the greatest – role

in the survivability and success of businesses. Recent surveys 1 , 2

have shown that IT managers and customers alike tend to pre-

fer systems that are more often in an operable state, than sys-

tems that may offer higher levels of security at the expense of

more failures. This means that any disruption to the availability of

a service directly translates into a loss of productivity and profit.

Businesses invest in deploying redundant hardware and replicas

to increase the availability of the services they offer. However, as

software designers often overlook Saltzer-Schroeder’s “conservative

design” principle (Saltzer and Schroeder, 1975), systems are often

engineered and tested for functionality under normal rather than

∗ Corresponding author.

E-mail addresses: melsabag@gmu.edu (M. Elsabagh), dbarbara@gmu.edu (D. Bar-

bará), dfleck@gmu.edu (D. Fleck), astavrou@gmu.edu (A. Stavrou).
1 Availability overrides security concerns, http://www.hrfuture.net/

performance- and- productivity/availability-over-rides-cloudsecurity- concerns.

php?Itemid=169 .
2 Mobile users favor productivity over security, http://www.infoworld.com/article/

2686762/security/mobile- users- favor- productivityover- security- as- they- should.

html .

worst-case conditions. As a result, worst-case scenarios are often

engineered by the attackers to over-consume needed resources (re-

source exhaustion), or to starve target processes of resources (re-

source starvation), effectively resulting in a partial or complete

denial-of-service (DoS) to legitimate users.

A system is exposed to resource exhaustion and starvation if

it fails to adequately restrict the amount of resources used or in-

fluenced by an actor 3 . This includes, but is not limited to, infras-

tructure resources, such as bandwidth and connection pools, and

computational resources such as memory and CPU time. The at-

tacks can operate at the network and transport layers (Zargar et al.,

2013), or at the application layer such as algorithmic and starvation

attacks (Crosby and Wallach, 2011; Chee and Brennan, 2010). The

asymmetric nature of communication protocols, design, and cod-

ing mistakes, and inherently expensive tasks all contribute to the

susceptibility of programs to resource exhaustion and starvation

attacks. Attacks targeting the network and transport layers have

attracted considerable research attention (Groza and Minea, 2011 ;

Rutar and Hollingsworth, 2011; Fu, 2011). Meanwhile, attacks have

become more sophisticated, and attackers have moved to higher

3 CWE-400: uncontrolled resource consumption, http://cwe.mitre.org/data/

definitions/400.html .

http://dx.doi.org/10.1016/j.jss.2017.02.043

0164-1212/© 2017 Elsevier Inc. All rights reserved.

Please cite this article as: M. Elsabagh et al., On early detection of application-level resource exhaustion and starvation, The Journal of

Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.02.043

http://dx.doi.org/10.1016/j.jss.2017.02.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:melsabag@gmu.edu
mailto:dbarbara@gmu.edu
mailto:dfleck@gmu.edu
mailto:astavrou@gmu.edu
http://www.hrfuture.net/performance-and-productivity/availability-over-rides-cloudsecurity-concerns.php?Itemid=169
http://www.infoworld.com/article/2686762/security/mobile-users-favor-productivityover-security-as-they-should.html
http://cwe.mitre.org/data/definitions/400.html
http://dx.doi.org/10.1016/j.jss.2017.02.043
http://dx.doi.org/10.1016/j.jss.2017.02.043

2 M. Elsabagh et al. / The Journal of Systems and Software 0 0 0 (2017) 1–18

ARTICLE IN PRESS

JID: JSS [m5G; March 6, 2017;10:0]

layers of the protocol stack. Since 2010, resource exhaustion at-

tacks that target the application layer have become more preva-

lent 4 (Chee and Brennan, 2010) than attacks at the network layer

and transport layer.

In this paper, we present Radmin, a system for automatic early

detection of application-level resource exhaustion and starvation

attacks. By application-level attacks, we refer to the classes of DoS

attacks that utilize small, specially crafted malicious inputs that

cause uncontrolled resource consumption in victim applications. To

this end, Radmin traces the resource consumption of a target pro-

gram in both the user and kernel spaces (see Section 3), builds

and executes multiple state machines that model the consumption

of the target program.

The key observation is that attacks result in abnormal sequences

of transitions between the different resource consumption levels of

a program when compared to normal conditions. By modeling the

resource consumption levels as multiple realizations of a random

variable, one can estimate a conditional distribution of the current

consumption level given the history (context) of measurements.

Consequently, the statistical properties of the resulting stochastic

process can be used to detect anomalous sequences. 5

Radmin operates in two phases: offline and online. In the offline

phase, the monitored programs are executed on benign inputs, and

Radmin builds multiple probabilistic finite automata (PFA) models

that capture the temporal and spatial information in the measure-

ments. The PFA model is a finite state machine model with a prob-

abilistic transition function (see Section 4). Both the time of hold-

ing a resource and the amount used of that resource are mapped

to states in the PFA, while changes in the states over the time are

mapped to transitions.

In the online phase, Radmin executes the PFAs as shadow re-

source consumption state machines, where it uses the transition

probabilities from the PFAs to detect anomalous consumption. Ad-

ditionally, Radmin uses a heartbeat signal to time out transitions

of the PFAs. Together with the transition probabilities, this enables

Radmin to detect both exhaustion and starvation attacks.

Radmin aims at detecting attacks as early as possible, i.e., be-

fore resources are wasted either due to exhaustion or starvation.

Radmin does not use any static resource consumption thresholds.

Instead, the PFAs capture the transitions between the different

consumption levels of different program states, and statistics of

the PFAs are used to detect anomalies. The PFAs allow Radmin

to implicitly map different program states, i.e., program behavior

at some execution point given some input, to dynamic upper and

lower resource consumption bounds.

We quantified the earliness of detection as the ratio of

resources that Radmin can save, to the maximum amounts of re-

sources that were consumed in benign conditions (see Section 5).

This corresponds to the tightest static threshold that traditional

defenses can set, without causing false alarms. Radmin has an

advantage over all existing defenses that use static thresholds

(see Section 10), since exhaustion and starvation attacks can

evade those defenses. Exhaustion attacks can consume the highest

amounts of resources possible, just below the static threshold (see

footnote 4) (Chee and Brennan, 2010). Additionally, starvation at-

tacks, by design, do not aim at directly consuming resources such

as attacks that trigger deadlocks or livelocks (Chee and Brennan,

2010).

This paper is an extension of the work we presented in

Elsabagh et al. (2015) . We make the following main contributions:

4 myths of ddos attacks, http://blog.radware.com/security/2012/02/4-massive-

myths- of- ddos/ .
5 Unless stated otherwise, we use “measurements” and “sequences” interchange-

ably in the rest of this paper.

1. Radmin, a novel system that can detect both resource exhaus-

tion and starvation attacks in their early stages. Radmin em-

ploys a novel detection algorithm that uses PFAs and a heart-

beat signal to detect both exhaustion and starvation attacks.

Radmin takes both temporal and spatial resource consumption

information into account and adds minimal overhead.

2. We implement a prototype 6 that uses kernel event tracing and

user space instrumentation to efficiently and accurately moni-

tor resource consumption of target processes.

3. We demonstrate the effectiveness of Radmin using a broad

range of synthetic attacks against a number of common Linux

programs. We show that Radmin can efficiently detect both

types of anomalies, in their early stages, with low overhead and

high accuracy.

4. (extension) We demonstrate the effectiveness of Radmin using

two common in-the-wild DoS attacks against Apache, namely

Apache Killer 7 and Slowloris 8 . We show that Radmin can effi-

ciently and accurately detect both attacks in their early stages.

5. (extension) We implement a new prototype, URadmin, that op-

erates solely in user-space. Uradmin is easier to deploy by end

users without requiring kernel tracing. We compare the accu-

racy and overhead of Radmin to URadmin.

6. (extension) We propose a metric to measure the degree of vul-

nerability of a program to resource exhaustion that may be trig-

gered using benign inputs that conform to the PFAs enforced by

Radmin.

The rest of the paper is organized as follows. Section 2 dis-

cusses the assumptions and threat model. Section 3 presents the

technical details of Radmin and its implementation. Section 4 de-

scribes the models used in Radmin and the detection algorithm.

Section 5 evaluates Radmin on synthetic exhaustion attacks and

common starvation weaknesses. In Section 6 we experiment with

in-the-wild attacks. We compare the detection performance and

overhead of Radmin to a user space only solution in Section 7 .

Section 8 analyzes the attacker’s knowledge and proposes a met-

ric for the degree of vulnerability of a program that is protected

by Radmin. Section 9 provides a discussion of different aspects of

Radmin and possible improvements. We discuss related work in

Section 10 , and conclude in Section 11 .

2. Assumptions and threat model

Radmin’s main goal is early detection of application-level re-

source exhaustion and starvation, which may result in full or par-

tial depletion of available resources (CPU time, memory, file de-

scriptors, threads, and processes) or starvation and stalling. We as-

sume that actors can be local or remote, with no privilege to over-

write system binaries or modify the kernel.

We consider the following types of exhaustion and starvation

attacks. First, attacks that result in a sudden surprisingly high or

low consumption of resources (e.g., an attacker controlled value

passed to a malloc call). Second, attacks that result in atypical

resource consumption sequences such as algorithmic and protocol-

specific attacks that aim at maximizing (flattening) the amounts of

consumed resources. Third, attacks that cause stalling of execution,

including triggering livelocks or prolonged locking of resources.

In our experiments, although we considered only programs run-

ning on × 86 Linux systems and following the Executable and Link-

able Format (ELF), the proposed approach places no restrictions on

6 Source code available under GPLv3 at: https://github.com/melsabagh/radmin .
7 Apache killer attack - apache server vulnerabilities, https://security. radware.

com/ddos- knowledge- center/ddospedia/apache- killer/ .
8 Slowloris - apache server vulnerabilities, https://security.radware. com/

ddos- knowledge- center/ddospedia/slowloris/ .

Please cite this article as: M. Elsabagh et al., On early detection of application-level resource exhaustion and starvation, The Journal of

Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.02.043

http://blog.radware.com/security/2012/02/4-massive-myths-of-ddos/
https://github.com/melsabagh/radmin
https://security.radware.com/ddos-knowledge-center/ddospedia/apache-killer/
https://security.radware.com/ddos-knowledge-center/ddospedia/slowloris/
http://dx.doi.org/10.1016/j.jss.2017.02.043

Download English Version:

https://daneshyari.com/en/article/6885381

Download Persian Version:

https://daneshyari.com/article/6885381

Daneshyari.com

https://daneshyari.com/en/article/6885381
https://daneshyari.com/article/6885381
https://daneshyari.com

