
ARTICLE IN PRESS

JID: JSS [m5G; June 13, 2017;11:32]

The Journal of Systems and Software 0 0 0 (2017) 1–13

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Analyzing inconsistencies in software product lines using an

ontological rule-based approach

Megha Bhushan

a , ∗, Shivani Goel b , Karamjit Kaur a

a CSED, Thapar University, Patiala, Punjab, India
b Department of Computer Science Engineering, Bennett University, Greater Noida, U.P., India

a r t i c l e i n f o

Article history:

Received 23 March 2016

Revised 14 January 2017

Accepted 1 June 2017

Available online xxx

Keywords:

Feature model

Software product line

Rule-based approach

Ontology

Inconsistency

Defects

a b s t r a c t

Software product line engineering (SPLE) is an evolving technical paradigm for generating software prod-

ucts. Feature model (FM) represents commonality and variability of a group of software products that

appears within a specific domain. The quality of FMs is one of the factors that impacts the correctness

of software product line (SPL). Developing FMs might also incorporate inaccurate relationships among

features which cause numerous defects in models. Inconsistency is one of such defect that decreases the

benefits of SPL. Existing approaches have focused in identifying inconsistencies in FMs however, only a

few of these approaches are able to provide their causes. In this paper FM is formalized from an ontologi-

cal view by converting model into a predicate-based ontology and defining a set of first-order logic based

rules for identifying FM inconsistencies along with their causes in natural language in order to assist de-

velopers with solutions to fix defects. A FM available in software product lines online tools repository has

been used to explain the presented approach and validated using 24 FMs of varied sizes up to 22,035 fea-

tures. Evaluation results demonstrate that our approach is effective and accurate for the FMs scalable up

to thousands of features and thus, improves SPL.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A software product line (SPL) is a family of related software in-

tensive systems, sharing a common and managed set of features

that fulfill the exact requirements of an appropriate market seg-

ment (Clements and Northrop, 2001). The main focus of SPL is

software reuse in an attempt to improve the quality and produc-

tivity while reducing cost as well as time to market.

Although other variability models for modeling variability and

commonality exist, such as decision models (Schmid and John,

2004), dopler variability models (Dhungana et al., 2011), orthog-

onal variability models (Pohl et al., 2005) and textual variability

language (Classen et al., 2011). However, feature model (FM) is the

most popular variability model for SPL that illustrates the features

and their relationships (Kang et al., 1990). There are various fac-

tors that impact the success of SPL such as (i) testing which in-

cludes to validate and verify the generated software products, (ii)

poor interface among customers and organization hinders commu-

nication of information and customer satisfaction, (iii) reusability

decreases with developing product line (PL) which includes bug

∗ Corresponding author.

E-mail addresses: megha@thapar.edu (M. Bhushan), shivani.goel@bennett.edu.in

(S. Goel), karamjit.kaur@thapar.edu (K. Kaur).

fixing, performance etc., (iv) overloaded software development sys-

tem becomes a challenge in the development and maintenance of

the system, and (iv) low quality software products can lead to the

development of defective new products. Therefore, ensuring qual-

ity in the software development paradigm is of utmost importance.

The complexity of FMs increases with growing number of features

and relationships which cause an increase in the contradictory re-

lations. These contradictory relationships arise due to the combi-

nation of features derived from multiple software products in or-

der to develop a new product. Presence of a single contradictory

relation in a FM can cause an inconsistency defect which makes

the model inconsistent. Inconsistency in FMs is a critical issue as

software products are derived by reusing models. A FM with incon-

sistency defects has contradictory information i.e., the information

which conflicts with other information in the similar model. It will

not allow deriving products, as these products may include incon-

sistent configurations. Therefore, defect due to inconsistency is one

of the major factors that deteriorates the reusability and quality of

models. For example, various developers that belong to the same

business unit working on a SPL of automotive assembly cause an

inconsistency defect by adding automatic and manual gears where

both gears cannot exist at the same time. Other examples include

Nokia (Thao, 2012), LG Industrial Systems (Pohl et al., 2005) etc.

Several techniques exist for the identification of FM incon-

sistencies such as constraint satisfaction techniques, logic truth

http://dx.doi.org/10.1016/j.jss.2017.06.002

0164-1212/© 2017 Elsevier Inc. All rights reserved.

Please cite this article as: M. Bhushan et al., Analyzing inconsistencies in software product lines using an ontological rule-based approach,

The Journal of Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.06.002

http://dx.doi.org/10.1016/j.jss.2017.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:megha@thapar.edu
mailto:shivani.goel@bennett.edu.in
mailto:karamjit.kaur@thapar.edu
http://dx.doi.org/10.1016/j.jss.2017.06.002
http://dx.doi.org/10.1016/j.jss.2017.06.002

2 M. Bhushan et al. / The Journal of Systems and Software 0 0 0 (2017) 1–13

ARTICLE IN PRESS

JID: JSS [m5G; June 13, 2017;11:32]

maintenance systems, formal semantics, logic based methods, ge-

netic algorithms and many more. Few approaches based on first-

order logic (FOL) provide an effective way to formalize FMs us-

ing ontology (Gruninger et al., 2008; Àlvez, 2012 and Bhushan and

Goel, 2016), which is a formal, explicit specification of a shared

conceptualization (Gruber, 1993). It improves the level of expres-

sivity when compared to FMs and facilitates to infer interesting

information related to the models; for instance, to verify consis-

tency among the FM and its meta-model, and to retrieve child fea-

tures. Other researchers have also used methods based on ontolo-

gies (Wang et al., 2007; Noorian et al., 2011 and Guo et al., 2012)

and FOL (Mannion, 2002 and Elfaki, 2016) to deal with defects due

to inconsistency.

Although several methods exist that have identified inconsis-

tency (Mannion, 2002; Gheyi et al., 2011; Zhang and Moller-

Perdersen, 2013; Yang and Dong, 2013; Asadi et al., 2014 and Thüm

et al., 2014b) but only a few methods have provided explanation

for their causes in a manner which is difficult to understand by

developers (Segura et al., 2010; Noorian et al., 2011; Felfernig et

al., 2013 and Lesta et al., 2015). However, Thüm et al. (2014a) have

only detected the constraints involved in dead features along with

false-optional features and Elfaki (2016) has only prevented indi-

rect inconsistency. The lack of methods to explain the cause of in-

consistency defects in a user friendly language and to recommend

solutions for resolving inconsistencies motivated us to propose an

effective approach. Moreover, manually inspecting larger FMs to

detect inconsistencies is a laborious task. Therefore, handling de-

fects due to inconsistency is a critical task in order to derive defect

free valid products from SPL, to improve reusability and quality of

SPL models.

We have developed an ontological approach based on FOL rules

that handles FM inconsistencies to improve the quality of FMs in

SPL and the results of evaluation using 24 FMs verified its ef-

fectiveness, accuracy and scalability with thousands of features in

FMs. Following are the contributions of the proposed approach:

I. We classify FM defects due to inconsistencies in the form of

cases.

II. We formalize FM using FOL predicate-based feature model on-

tology (FMO) which is one of the important contributions of the

proposed approach that provides a correspondence among FM

representations and FMO.

III. We define and implement a set of FOL rules in Prolog

(Wielemaker, 2015) to deal with inconsistencies in FMs.

IV. We identify FM inconsistencies and their causes using a user

friendly natural language in the presented classification.

V. The causes explained in natural language are easily understand-

able by developers and this information assists them to fix in-

consistency defects by recommending solutions (i.e., by elimi-

nating relationships involved in the defect).

VI. Evaluation results of the proposed approach using real-world

FMs from online software product lines online tools (SPLOT 1)

repository as well as randomly generated FMs with thousands

of features verifies our approach to be effective, accurate and

scalable up to 22,035 features in FMs. Thus, it allows deriving

defect free software products by subsequently enhancing the

reusability and quality of FMs in SPL.

Following is the structure of remaining paper:

Section 2 presents preliminaries required to understand the ap-

proach presented in Section 3 . Section 4 analyzes performance and

evaluates the scalability, execution time and accuracy of proposed

approach. Section 5 compares our approach with related works.

Section 6 describes concluding remarks and future directions.

1 http://www.splot-research.org/ .

2. Preliminaries

2.1. Inconsistencies

Various types of inconsistency defects discussed in this paper

are explained with the help of Fig. 1 (Salinesi et al., 2010 and

Elfaki, 2016), where r represents root feature which is mandatory

to be included in each valid product of the PL, p1 and p2 represent

parent child features, and f1 and f2 represent child features.

Rule 1: Mandatory child features f1 and f2 have same parent

root feature r, and f1 implies f2 whereas f2 excludes f1 . Thus,

it is an inconsistency as both features f1 and f2 can never

be selected simultaneously for the configuration of a valid

product.

Rule 2: Mandatory child features f1 and f2 have same parent

root feature r where f1 excludes f2. Thus, it is an inconsis-

tency as both features f1 and f2 are mutually excluded and

these features can never be selected together for the config-

uration of a valid product.

Rule 3: Mandatory parent features p1 and p2 have same root

feature r where p1 excludes p2 and p1 has a mandatory child

feature f1 which implies p2 .

Rule 4: Mandatory parent features p1 and p2 have same root

feature r where p1 excludes p2 and p1 has a mandatory child

feature f1 which implies an optional child feature f2 whose

parent is p2 .

Rule 5: A mandatory parent feature p2 implies an optional par-

ent feature p1 where both features have same root feature r

and p1 has a mandatory child feature f1 which excludes p2.

Rule 6: A mandatory parent feature p1 implies an optional par-

ent feature p2 where both features have same root feature r

and p1 has a mandatory child feature f1 which excludes the

other mandatory child feature f2 having parent p2 .

Rule 7: A mandatory parent feature p1 implies an optional par-

ent feature p2 where both features have same root feature r

and p1 has a mandatory child feature f1 which excludes p2.

Rule 8: Mandatory child features f1 and f2 belong to the group

cardinality < 1..1 > with a mandatory parent feature p where

f1 implies f2 . In this particular case, p can also be connected

to the root feature. The implication relationship among the

child features exceeds the upper limit of the group cardinal-

ity and does not even allow to incorporate one sub feature.

2.2. Running example of FM

The variabilities and commonalities in SPLE are represented us-

ing feature modeling notation by means of relationships among the

features. A feature is defined as a unique element that is of rele-

vance to the user. It is a hierarchical tree structure comprising of

features and relationships among them. The entire SPL is repre-

sented with the help of root of the FM tree. An adapted version of

the address FM available in the SPLOT repository (Mendonca et al.,

2009) is used as a running example in this paper. Fig. 2 describes

the address FM using feature modeling notation where “address-

book ” is the root feature. There can be more than one child feature

associated with a parent feature. A unique name has been assigned

to each feature in FM. The cross tree constraint relationships i.e.,

exclusion and implication among features have also been shown

for better interpretation of the proposed approach. To illustrate the

proposed approach, 14 cross tree constraints and 18 additional fea-

tures were introduced in the primary model to inject inconsistency

defects.

Following illustrates various feature modeling relationships us-

ing Fig. 2:

Please cite this article as: M. Bhushan et al., Analyzing inconsistencies in software product lines using an ontological rule-based approach,

The Journal of Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.06.002

http://www.splot-research.org/
http://dx.doi.org/10.1016/j.jss.2017.06.002

Download English Version:

https://daneshyari.com/en/article/6885391

Download Persian Version:

https://daneshyari.com/article/6885391

Daneshyari.com

https://daneshyari.com/en/article/6885391
https://daneshyari.com/article/6885391
https://daneshyari.com

