
ARTICLE IN PRESS

JID: JSS [m5G; April 14, 2016;20:20]

The Journal of Systems and Software 0 0 0 (2016) 1–17

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An empirical study to quantify the characteristics of Java programs

that may influence symbolic execution from a unit testing perspective

Marcelo M. Eler a , ∗, Andre T. Endo

b , Vinicius H.S. Durelli c , d

a Escola de Artes, Ciências e Humanidades Universidade de São Paulo (USP), São Paulo, Brazil
b Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
c University of Groningen, Groningen, The Netherlands
d Faculdade Campo Limpo Paulista, So Paulo, Brazil

a r t i c l e i n f o

Article history:

Received 23 January 2015

Revised 12 September 2015

Accepted 7 March 2016

Available online xxx

Keywords:

Software testing

Symbolic execution

Test data generation

a b s t r a c t

In software testing, a program is executed in hopes of revealing faults. Over the years, specific testing

criteria have been proposed to help testers to devise test cases that cover the most relevant faulty sce-

narios. Symbolic execution has been used as an effective way of automatically generating test data that

meet those criteria. Although this technique has been used for over three decades, several challenges re-

main and there is a lack of research on how often they appear in real-world applications. In this paper,

we analyzed two samples of open source Java projects in order to understand the characteristics that

may hinder the generation of unit test data using symbolic execution. The first sample, named SF100, is

a third party corpus of classes obtained from 100 projects hosted by SourceForge. The second sample,

called R47, is a set of 47 well-known and mature projects we selected from different repositories. Both

samples are compared with respect to four dimensions that influence symbolic execution: path explosion,

constraint complexity, dependency, and exception-dependent paths. The results provide valuable insight

into how researchers and practitioners can tailor symbolic execution techniques and tools to better suit

the needs of different Java applications.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Software testing is a key quality assurance activity and also one

of the most costly activities of the whole software development

process. During this activity, testers run the program under test

with the goal of uncovering faults (Myers et al., 2004). Ideally, the

program under test should be run against all possible inputs and

scenarios. However, this is impractical or even infeasible due to the

large size of the input domain of most programs.

Given such a limitation, instead of using the entire input do-

main, testers resort to testing techniques in order to decide what

inputs are more likely to uncover different types of faults. Test-

ing techniques help testers to define test scenarios and input data

based on a small but significant subset of the input domain. Each

testing technique has specific criteria to cover a particular aspect of

the program and each criterion defines different test requirements

that should be met by test cases.

Functional and structural testing are two of the most commonly

used testing techniques. The main goal of the former is to exercise

∗ Corresponding author. Tel.: +55 11964746506.

E-mail addresses: marceloeler@usp.br , marceloeler@gmail.com (M.M. Eler),

andreendo@utfpr.edu.br (A.T. Endo), durelli@icmc.usp.br (V.H.S. Durelli).

all functions of the program under test, whereas the purpose of the

latter is to cover certain structures such as paths, instructions, and

branches. Structural testing criteria yield a large number of test re-

quirements, which implies that manually generating test data to

satisfy these test requirements is time consuming, error prone, and

unwieldy. Consequently, several approaches have been proposed to

automate the generation of test data that satisfy structural testing

criteria (Galler and Aichernig, 2014).

Symbolic execution and constraint solving have been used as

effective techniques to generate test data for structural testing

(Ramamoorthy et al., 1976; King, 1976; Cadar and Sen, 2013; Eler

et al., 2014a). In general, symbolic execution lies in representing

the program elements (usually local variables and attributes) as

functions of symbolic input values (King, 1976; Cadar and Sen,

2013). Then, each execution path in the program is executed based

only on the symbolic input data. The symbolic execution of a path

is a set of constraints that should be satisfied so that the path can

be executed. The resultant set of constraints associated to each ex-

ecution path is a path constraint. Finally, each path constraint is

sent to a constraint solver, which in turn generates, if possible,

concrete input values (i.e., test data) that satisfy the constraints.

The idea of generating test data using symbolic execution dates

back from more than three decades ago. However, while the idea

http://dx.doi.org/10.1016/j.jss.2016.03.020

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: M.M. Eler et al., An empirical study to quantify the characteristics of Java programs that may influence symbolic

execution from a unit testing perspective, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.03.020

http://dx.doi.org/10.1016/j.jss.2016.03.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:marceloeler@usp.br
mailto:marceloeler@gmail.com
mailto:andreendo@utfpr.edu.br
mailto:durelli@icmc.usp.br
http://dx.doi.org/10.1016/j.jss.2016.03.020
http://dx.doi.org/10.1016/j.jss.2016.03.020

2 M.M. Eler et al. / The Journal of Systems and Software 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: JSS [m5G; April 14, 2016;20:20]

is appealing in principle, symbolic execution raises a number of

research challenges. Some of these challenges have not been com-

pletely overcome yet. Path explosion is one of them: symbolically

executing a large number of paths entails high computational over-

head (Anand et al., 2013). Moreover, long paths tend to yield large

path constraints, which can hurt performance (Cadar and Sen,

2013). Constraint complexity is also an issue given that data types

and the complexity of arithmetic expressions may affect the ef-

ficiency and precision of constraint solvers (Pasareanu and Visser,

2009; Cadar et al., 2011). Approaches also have to deal with depen-

dency . Several constraints are related to method calls, whose values

may not depend on symbolic input values (Anand et al., 2013). In

addition, there are many exception-dependent paths that can only

be executed when a given exception is thrown. In such cases, con-

straints to raise a given exception may not be explicitly declared in

the code, hampering the coverage of specific exception paths.

If not handled properly, the aforementioned issues can jeop-

ardize the test generation process. Although there has been some

research on analyzing the characteristics of programs that have an

impact on symbolic execution (Qu and Robinson, 2011; Xiao et al.,

2013), no large scale study has been conducted with real-world

applications.

In this paper, we set out to investigate the nature and the fre-

quency of the aforementioned issues related to symbolic execution.

Specifically, we analyzed the following factors from a unit testing

perspective: (i) the distributions of loops ad nested loops, which

cause path explosion; (ii) data types, path constraint size, nonlin-

ear expressions, and contradictory constraints, which contribute to

constraint complexity; (iii) method calls, which represent dependen-

cies ; and (iv) constraints with exception declarations, which indi-

cate exception-dependent paths . Towards this end, we developed a

tool to perform symbolic execution on real-world Java programs

and collect metrics related to these factors. Two benchmarks com-

posed of real-world open source Java programs were adopted: (i)

SF100 is a corpus of classes extracted from 100 open source pro-

grams described in Fraser and Arcuri (2012) , and (ii) R47 is a set

of well-known and established projects we selected from differ-

ent repositories (e.g., ASF and GitHub), some of the programs in

this set are described by Durelli et al. (2016) . In total, we analyzed

219,248 methods with at least one branch, 34,493 methods from

SF100 and 184,755 methods from R47.

Preliminary results of this research considering only SF100 were

published in Eler et al. (2014b) . The extensions of this work are

essentially twofold. First, we included a sizable corpus of classes

(viz., R47) to the analysis, extending the results we obtained from

SF100. We then contrasted the results from both benchmarks. Sec-

ond, other factors that may influence constraint complexity were

considered. Nonlinear expressions in path constraints were an-

alyzed and we observed how the search for contradictory con-

straints helps to eliminate unsolvable path constraints.

By analyzing the two benchmarks, we concluded that: (i) meth-

ods with potential to cause path explosion due to the presence of

loops represent around 25% of the analyzed methods, while meth-

ods with at least one nested loop represent nearly 6.5% of the

methods; (ii) constraint complexity is influenced by the occurrence

of complex types (e.g., objects) present in 65% to 73% of meth-

ods, while floating-point types and nonlinear expressions are rare;

(iii) dependency is also a major issue since 40% of the methods re-

quire an external library (i.e., outside of the project scope); and

(iv) exception-dependent paths also pose a challenge to test data

generation using symbolic execution since around one third of the

methods deal with exceptions.

These results provide valuable insight into how to use and

evaluate the adequacy of modern-day approaches for symbolic

execution in software testing. Researchers and practitioners can

draw from the key results of this investigation to tailor symbolic

execution techniques and tools to better suit the needs of different

Java applications.

The remainder of this paper is organized as follows.

Section 2 covers background and issues related to test data

generation employing symbolic execution. Section 3 describes

the empirical study and outlines the data extraction procedure.

Section 4 presents the analysis of the results for the two bench-

marks. Section 5 discusses the results. Section 6 synthesizes the

lessons learned and recommendations for researchers and prac-

titioners. Section 7 summarizes related work. Section 8 presents

concluding remarks and outlines future work.

2. Background

Since the seminal work of King in 1976 (King, 1976), symbolic

execution has been used for more than three decades to gener-

ate test data for achieving high coverage during structural testing

(Ramamoorthy et al., 1976; Cadar and Sen, 2013). The general pro-

cess is about the same for most of the approaches: the program

under test is symbolically executed using symbolic input values

and path constraints associated with each execution path are iden-

tified. Each path constraint is then sent to a constraint solver that,

if possible, finds solutions to satisfy all constraints.

A path constraint is a logical expression connecting all con-

straints that should be satisfied in order to execute a particular

path. Typically, path constraints are made up of combinations of

four elements: (i) variables, which can be local, instance, or class

variables; (ii) method calls, which can be either calls to methods

of the same class, methods of other classes, or methods of other

projects or libraries; (iii) constants; and (iv) exception declarations,

which are indications that exceptions must be thrown to execute

certain paths.

Recently, symbolic execution has been receiving renewed atten-

tion due to better constraint solvers and the introduction of hybrid

approaches (e.g., concolic testing (Sen, 2007)). Nevertheless, sym-

bolic execution still poses several challenges when applied to soft-

ware testing (Pasareanu and Visser, 2009; Godefroid, 2012; Cadar

and Sen, 2013; Anand et al., 2013; Xiao et al., 2013): (i) path explo-

sion, (ii) complexity of constraints, (iii) dependency, and (iv) paths

triggered by exceptions. The next subsections elaborate on the na-

ture of these four issues.

2.1. Path explosion

Path explosion is one of the key challenges (Anand et al., 2013;

Xiao et al., 2013). A workaround to this issue is to use algorithms

that lead to paths that cover all branches by going through loops

only once. Yet, the number of constraints to be solved in the re-

sulting paths tends to be large. This can overwhelm the constraint

solver and hurt performance (Cadar and Sen, 2013). In addition,

some branches may be covered only when paths including more

than one loop iteration are taken into account. In such cases, meth-

ods with several nested loops tend to generate a huge number of

paths. As a result, performance is negatively affected because the

constraint solver has to go over a multitude of path constraints up

to the point that a solvable path constraint is identified.

2.2. Constraint complexity

The complexity of a constraint may be related to the data types

of their elements or the complexity of the arithmetic expressions.

Symbolic execution approaches can better handle constraints

with primitive types (e.g., fixed-point data types) than constraints

sequences containing complex types (e.g., arrays and objects)

(Pasareanu and Visser, 2009). While the initial approaches only

Please cite this article as: M.M. Eler et al., An empirical study to quantify the characteristics of Java programs that may influence symbolic

execution from a unit testing perspective, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.03.020

http://dx.doi.org/10.1016/j.jss.2016.03.020

Download English Version:

https://daneshyari.com/en/article/6885455

Download Persian Version:

https://daneshyari.com/article/6885455

Daneshyari.com

https://daneshyari.com/en/article/6885455
https://daneshyari.com/article/6885455
https://daneshyari.com

