
ARTICLE IN PRESS

JID: JSS [m5G; July 9, 2016;1:16]

The Journal of Systems and Software 0 0 0 (2016) 1–18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Improving software performance and reliability in a distributed and

concurrent environment with an architecture-based self-adaptive

framework

Chung-Horng Lung

∗, Xu Zhang, Pragash Rajeswaran

Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 22 December 2014

Revised 7 June 2016

Accepted 29 June 2016

Available online xxx

Keywords:

Autonomic computing

Software architecture

Performance

Reliability

Patterns

Distributed and concurrent architecture

Elastic computing

a b s t r a c t

More and more, modern software systems in a distributed and parallel environment are becoming highly

complex and difficult to manage. A self-adaptive approach that integrates monitoring, analyzing, and ac-

tuation functionalities has the potential to accommodate an ever dynamically changing environment. This

paper proposes an architecture-level self-adaptive framework with the aim of improving performance and

reliability. To meet such a goal, this paper presents a Self-Adaptive Framework for Concurrency Architec-

tures (SAFCA) that consists of multiple well-documented architectural patterns in addition to monitoring

and adaptive capabilities. With this framework, a system using an architectural alternative can activate

another alternative at runtime to cope with increasing demands or to recover from failure. Five adap-

tation mechanisms have been developed for concept demonstration and evaluation; four focus on per-

formance improvement and one deals with failover and reliability enhancement. We have performed a

number of experiments with this framework. The experimental results demonstrate that the proposed

adaptive framework can mitigate the over-provisioning method commonly used in practice. As a result,

resource usage becomes more efficient for most normal conditions, while the system is still able to ef-

fectively handle bursty or growing demands using an adaptive mechanism. The performance of SAFCA is

also better than systems using only standalone architectural alternatives without an adaptation scheme.

Moreover, the experimental results show that a fast recovery can be realized in the case of failure by

conducting an architecture switchover to maintain the desired service.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The complexity of computing systems and variety of computing

devices have risen dramatically (EMA, 2006). As a result, a signifi-

cant portion of system management is closely tied to configuration,

the process of assembling and/or adjusting components towards a

desired solution (Keller et al., 2007). Human-driven configuration

operations have been widely used at various stages in practice, and

constitute the main factor behind high operational costs and errors

(Kephart and Chess, 2003).

Take cloud computing as one example of such configuration

complexity and system management. The demand for cloud dat-

acenters is highly dynamic. Under normal workload conditions,

cloud servers are for the most part more than adequate to han-

dle traffic demands. In fact, low utilization of datacenters has of-

∗ Corresponding author.

E-mail addresses: chlung@sec.carleton.ca (C.-H. Lung), zhangxu@sec.carleton.ca

(X. Zhang), pragasra@gmail.com (P. Rajeswaran).

ten been observed (e.g., 6%, 7%, 12%, 20%–40% have been reported

for various datacenters) (Benik and Ventures, 2013). However, the

server may still become unavailable due to unprecedented de-

mands (Welsh and Culler, 2003). To deal with such diverse de-

mands, many systems are typically configured or over-provisioned

based on peak demands. The primary problem with static over-

provisioning is poor resource efficiency and the associated high

cost of non-peak periods.

Autonomic computing has been proposed to provide solutions

that help manage resources more effectively, i.e., not only scaling

up but also scaling down of system resources in response to dy-

namic demands. In other words, autonomic computing supports

system elasticity so as to allocate or de-allocate resources dynam-

ically due to changing workloads and possibly other factors as

well. Manually configuring systems for dynamic scenarios has been

shown to be inadequate (IBM, 2006). Rather, self-adaptive solu-

tions are better suited for such problems.

Specifically, the objectives of autonomic computing are to en-

able a system to automatically configure, heal, protect, and opti-

http://dx.doi.org/10.1016/j.jss.2016.06.102

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: C.-H. Lung et al., Improving software performance and reliability in a distributed and con-

current environment with an architecture-based self-adaptive framework, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.06.102

http://dx.doi.org/10.1016/j.jss.2016.06.102
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:chlung@sec.carleton.ca
mailto:zhangxu@sec.carleton.ca
mailto:pragasra@gmail.com
http://dx.doi.org/10.1016/j.jss.2016.06.102
http://dx.doi.org/10.1016/j.jss.2016.06.102

2 C.-H. Lung et al. / The Journal of Systems and Software 0 0 0 (2016) 1–18

ARTICLE IN PRESS

JID: JSS [m5G; July 9, 2016;1:16]

mize itself (Kephart and Chess, 2003). A number of organizations

have been working on projects related to autonomic computing

(Muller et al., 2006), particularly in the area of cloud computing

for distributed and concurrent applications due to the diverse de-

mands and elevated system complexity. Hence, the development of

self-adaptive or self-managing systems has become a crucial topic

within the software engineering community (Huebscher and Mc-

Cann, 2008; SEAMS, 2016).

Self-adaptation can be realized at various levels of abstrac-

tion. To deal with the increasing complexity of software systems,

this paper advocates an architecture-based self-adaptive approach.

Garlan et al. (2009) pointed out that self-adaptation at the ar-

chitectural level has enormous potentials. First, the rich set of

knowledge in software architecture analysis (ATAM, 20 0 0; Lung

and Kalaichelvan, 20 0 0) facilitates system design for runtime adap-

tation. Next, the abstract architecture description reveals the key

system-level properties and expected behaviors. Further, the ar-

chitectural model exposes explicit system integrity constraints,

thereby supporting validity check.

The main objective of this paper is to take software archi-

tecture analysis (e.g., ATAM, 20 0 0; Lung and Kalaichelvan, 20 0 0)

one step further by utilizing a self-adaptive scheme built on the

strengths of different architectural alternatives (Garlan et al., 2009).

Traditional software architecture analysis methods have investi-

gated tradeoffs among architectural alternatives based on scenarios

and non-functional attributes. However, the target system is typi-

cally built solely on one selected architectural alternative. On the

other hand, each architectural option may have its own properties

and strengths for different scenarios. Using our proposed approach,

multiple architectural alternatives can be selected after analysis be-

fore being integrated into a framework. More importantly, an adap-

tive policy is constructed and built into the framework itself based

on the strengths of each architectural alternative so as to support

self-adaptation for different scenarios.

In other words, the framework can dynamically facilitate

architecture-level adaptation at runtime, depending on the

strengths of selected architectural alternatives, the pre-established

adaptive policy, and monitored runtime observations. The target

problem domain of this paper is the distributed and concurrent

systems, while the main non-functional attributes considered are

performance and reliability. We have built such a self-adaptive

framework by making use of well-known architectural patterns in

this problem domain (Schmidt et al., 20 0 0), as well as our own

experimental observations for those architectural patterns (Lung et

al., 2014; Zhang and Lung, 2010).

The primary contribution of the paper is twofold:

(1) This paper presents a novel approach to supporting

architecture-level adaptation. The approach extends tradi-

tional software architecture analysis and devises multiple

adaptive policies that make use of the strengths of different

architectural alternatives to enhance performance and relia-

bility.

(2) We have developed such a framework in the area of dis-

tributed and concurrent processing. Further, we have con-

ducted thorough experiments to validate the proposed ap-

proach with multiple adaptation mechanisms. The results

from a number of experiments demonstrate the feasibility

of architecture-based adaptation at runtime and subsequent

improvement of performance and reliability.

This paper is organized as follows: Section 2 briefly describes

the background to autonomic computing and concurrency architec-

tural patterns (or alternatives that have been used in our studies).

Section 3 describes the self-adaptive framework, SAFCA, including

different policies for increasing performance and one policy for im-

proving reliability. Section 4 illustrates the experiments and results.

Section 5 discusses the threats to validity. Section 6 presents re-

lated work on self-adaptive systems. Finally, Section 7 presents our

conclusions and a look at future research directions.

2. Background

This section briefly presents the related background to auto-

nomic computing and various existing concurrency architectural

patterns or alternatives to thread management.

2.1. Overview of autonomic computing

A particular challenge of modern computing systems is their el-

evated level of complexity. The manual configuration and control

of a complex computing system is both time-consuming and error-

prone. Moreover, those issues become more serious as the size of

those systems tends to increase rapidly. The main objective of au-

tonomic computing is to define the rules for a system to control its

own behavior, such that the system itself can dynamically manage

its own actions to accommodate changes or demands (EMA, 2006;

Huebscher and McCann, 2008).

There are four main functional areas for autonomic computing,

which may be highlighted as follows (IBM, 2006):

• Self-configuration: automatic configuration of system compo-

nents;
• Self-healing: automatic discovery and correction of faults;
• Self-optimization: automatic monitoring and management of

resources to achieve optimal solutions with respect to the re-

quirements and monitored data;
• Self-protection: pro-active identification and protection from ar-

bitrary attacks.

This paper focuses on self-optimization or self-adaptation for

better performance, and self-healing for greater reliability.

An autonomic manager, used to manage software or hardware

resources, is a key component of the autonomic system. The auto-

nomic manager has four main functions (IBM, 2006):

• Monitor: collect data that the autonomic manager needs from

the system;
• Analyze: analyze the data to determine if something needs to

be changed;
• Plan: create a plan or sequence of actions that specifies the nec-

essary changes;
• Execute: perform the actions according to the plan.

Autonomic computing has received a great deal of attention re-

cently, primarily due to the increasing popularity of cloud comput-

ing. One key advantage of cloud computing is its flexibility for dy-

namic on-demand resource allocation. Various techniques in elas-

tic computing (Galante and de Bona, 2012) or auto-scaling (Lorido-

Botran et al., 2014) have been investigated to support dynamic re-

source allocation. Elastic solutions have four main characteristics:

(1) scope, (2) policy, (3) purpose, and (4) method (Galante and

de Bona, 2012). Lorido-Botran et al. (2014) also categorize existing

auto-scaling approaches into five groups: threshold-based policies,

reinforcement learning, queuing theory, control theory, and time-

series analysis.

In summary, autonomic computing becomes essential as a re-

sult of the increased complexity of systems, uncertainty of the

environment, and popularity of cloud computing. One crucial re-

search issue is how to build capabilities into a system, allowing it

to adapt its behavior in response to a dynamically changing envi-

ronment.

Please cite this article as: C.-H. Lung et al., Improving software performance and reliability in a distributed and con-

current environment with an architecture-based self-adaptive framework, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.06.102

http://dx.doi.org/10.1016/j.jss.2016.06.102

Download English Version:

https://daneshyari.com/en/article/6885457

Download Persian Version:

https://daneshyari.com/article/6885457

Daneshyari.com

https://daneshyari.com/en/article/6885457
https://daneshyari.com/article/6885457
https://daneshyari.com

