
ARTICLE IN PRESS
JID: JSS [m5G;January 22, 2016;16:2]

The Journal of Systems and Software 000 (2016) 1–14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Towards uniform management of multi-layered cloud services by

applying model-driven development

Toni Mastelić a,∗, Andrés García García b, Ivona Brandić a

a Institute of Software Technology and Interactive Systems, Vienna University of Technology, Favoritenstrasse 9-11/188, Vienna A-1040, Austria
b IBM Haifa Research Laboratory, Haifa, Israel

a r t i c l e i n f o

Article history:

Received 20 December 2014

Revised 30 September 2015

Accepted 2 January 2016

Available online xxx

Keywords:

Cloud computing

Cloud service model

Cloud management system

a b s t r a c t

Cloud Computing started by renting computing infrastructures in form of virtual machines, which in-

clude hardware resources such as memory and processors. However, due to its popularity it gave birth to

Everything-as-a-Service concept, where each service can comprise large variety of software/hardware el-

ements. Although having the same concept, services represent complex environments that have to be

deployed and managed by a provider using individual tools. The tools are usually used manually or

specifically integrated for a single service. This requires changing an entire deployment procedure in

case the service gets modified, while additionally limiting consolidation capabilities due to tight service

integration.

In this paper, we utilize Model-Driven Development approach for managing arbitrary Cloud services. We

define a metamodel of a Cloud service called CoPS, which describes a service as a composition of soft-

ware/hardware elements by using three sequential models, namely Component, Product and Service. We

also present an architecture of a Cloud Management System (CMS) used for automatic service manage-

ment, which transforms the models from an abstract representation to an actual deployment. The ap-

proach is validated by realizing four real-world use cases using a prototype implementation. Finally, we

evaluate its consolidation capabilities by simulating resource consumption and deployment time.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cloud Computing represents a new paradigm where arbitrary

IT products, such as software applications, development envi-

ronments and processors are integrated and offered as part of

on-demand online services. According to National Institute of Stan-

dards and Technology (Mell and Grance, 2009), Cloud Computing

defines three service layers, including Software-as-a-Service (SaaS),

Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS),

also referred to as SPI service models. Unlike IaaS that usually

offers a single distinct product, i.e., a virtual machine (VM), upper

layers such as PaaS and SaaS provide services that are composed

out of arbitrary software products such as database applications,

web servers and storage platforms. This leads to an explosion

of services such as Storage-aaS, Database-aaS, Identity-aaS and

Computing-aaS, thus giving a birth to Everything-as-a-Service

(XaaS) concept (Banerjee et al., 2011).

∗ Corresponding author. Tel.: +43158801188761.

E-mail addresses: toni@ec.tuwien.ac.at (T. Mastelić), angarg12@upv.es (A. García

García), ivona@ec.tuwien.ac.at (I. Brandić).

Building and managing such diverse services requires separate

deployment tools (Forell et al., 2011) for each element that is part

of the service, usually being distinguished by its deployment layer,

e.g., VMs are deployed on an infrastructure layer using OpenNebula

(Distributed Sys. Arch. Research Group, 2009), while a database is

deployed using Docker (Docker, Inc., 2014). These tools are mostly

used manually and separately for each layer, or in a best case sce-

nario they are specifically integrated and customized for a single

Cloud service. However, recent trends among Cloud providers show

tendency towards multi-layered services, where each provider of-

fers services spreading across several layers. One example is Mi-

crosoft, which offered a standard PaaS with their Azure (Microsoft

Corporation, 2013), until they granted a VM access to their cus-

tomers by introducing VM roles, hence reaching towards elements

on an infrastructure layer. Another example is Amazon (Amazon

Web Services, Inc., 2013a), which now covers all three layers with

their broad assembly of services. Problem with such an approach

is that a deployment procedure for each service is being built from

the ground up, without reusing procedures from services that use

the same elements. Moreover, a tight integration of services limits

their consolidation capabilities as the service elements cannot be

reused.

http://dx.doi.org/10.1016/j.jss.2016.01.001

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: T. Mastelić et al., Towards uniform management of multi-layered cloud services by applying model-driven

development, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.01.001

http://dx.doi.org/10.1016/j.jss.2016.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:toni@ec.tuwien.ac.at
mailto:angarg12@upv.es
mailto:ivona@ec.tuwien.ac.at
http://dx.doi.org/10.1016/j.jss.2016.01.001
http://dx.doi.org/10.1016/j.jss.2016.01.001


2 T. Mastelić et al. / The Journal of Systems and Software 000 (2016) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;January 22, 2016;16:2]

In order to reuse existing deployment procedures and elements,

Cloud service elements should be abstracted with a higher-level

model (Ferrer et al., 2012) capable of describing any service with

regards to its composition (Rodero-Merino et al., 2010). Further-

more, a Cloud Management System (CMS) must implement a

uniform deployment procedure that utilizes this abstraction, while

actual deployment is executed by lower-level tools specifically

designed for a targeted piece of software. For example, a database

application can be part of SaaS such as Facebook (Facebook, Inc.,

2013), where a customer has no access to it. It can be part of PaaS

such as Amazon RDS (Amazon Web Services, Inc., 2013a), where

it is accessed by a customer, but managed by a provider. Finally,

a database can be part of Amazon EC2 (Amazon Web Services,

Inc., 2013a) as an example of IaaS, where it is both accessed and

managed by a customer. In all three cases, a database application

could be deployed with the same procedure using a different

configuration.

In this paper, we introduce a uniform approach for deploy-

ing and monitoring arbitrary Cloud services. We utilize Model-

Driven Development (MDD) (Mellor et al., 2003) for defining a

Cloud service metamodel called CoPS, in order to get a uniform

representation of a Cloud service. CoPS follows a Model-Driven Ar-

chitecture (MDA) scheme proposed by OMG (Miller and Mukerji,

2003), which defines three levels of models that describe an en-

vironment on an abstract level, on a structural level and finally

on an implementation level. We refer to these models as Service,

Product and Component, which form the abbreviation CoPS in a

reverse order. The models can be sequentially transformed be-

tween each other going from an abstract representation to ac-

tual deployment. Additionally, CoPS allows model partitioning so

models for individual service elements can be reused in other

services.

We present a CMS architecture capable of managing Cloud ser-

vices described with CoPS. Management of a service and its el-

ements is performed on a structural level, since service compo-

nents are represented through templates as black boxes, while

transformation to an implementation model and final deployment

is performed via plugins. Additionally, modularity of CoPS mod-

els allows the CMS to reuse templates and plugins for multi-

ple Cloud services. Modules and interfaces of the architecture are

described using Unified Modeling Language (UML) (Rumbaugh

et al., 1999).

A prototype of the architecture is implemented using Cloud-

compaas (García et al., 2010), a Cloud manager framework for dy-

namic management of Cloud resources, and M4Cloud (Mastelic

et al., 2012), a plugin-based monitoring tool capable of monitor-

ing arbitrary metrics. The prototype is used for validating both

CoPS metamodel and the CMS architecture by realizing four use

cases based on real world scenarios. Additionally, we simulate a

resource utilization and deployment time in order to show bene-

fits of a modular service composition provided by our approach.

Results show that our approach provides better consolidation ca-

pabilities by reducing resource consumption over 10%, as well as

speeding up a deployment time by 4x.

The rest of the paper is organized as follows. Four use cases

used throughout the paper are described in Section 2. Section 3

gives a motivation for the approach taken in this paper. Section 4

introduces the CoPS model. Section 5 provides a detailed descrip-

tion of the architecture, while Section 6 describes the implemen-

tation of its prototype. Section 7 gives validation of the CoPS

metamodel and the architecture by realizing the three use cases.

Section 8 presents simulation results showing resource utilization

and deployment time. Section 9 describes relevant related works.

Finally, Section 10 concludes the paper and proposes the future

work.

2. Use case scenarios

We depict four use cases based on real world scenarios to em-

phasize issues related to management of Cloud services.

• Online Course: Students of an online course require a specific

software stack to complete exercises of the course, similar to

Strawberry Canyon LLC (2013). The software stack includes a

large number of tightly coupled Python libraries, some of them

specific to the course topic and not widely available. In order

to avoid a cumbersome operation of manually installing the li-

braries, the course offers an online service for instantiating a

VM with a customizable software stack.

This is a basic IaaS scenario where a provider such as Ama-

zon (Amazon Web Services, Inc., 2013a) offers VMs. Addition-

ally, the provider also offers ready to use VM images with pre-

installed software (Canonical Ltd., 2013). Another examples of

such services are AWS Marketplace (Amazon Web Services, Inc.,

2013b) and Vagrantbox (Rushgrove, 2013), which offer precon-

figured VM images.
• Genomics: A group of scientists want to run their scientific ap-

plications in a Cloud. They utilize distributed genomic applica-

tions that work on large datasets similar to CloudBlast applica-

tion (Matsunaga et al., 2008). However, since not every instance

works over a complete dataset, but only a small subset, trans-

ferring data to each machine incurs a large overhead in terms

of time and cost. Therefore, they want to utilize an arbitrary

number of VMs with access to a third party online BioDatabase

such as GenBank (Benson et al., 2009) or EMBL Nucleotide Se-

quence Database (Kanz et al., 2005) allowing customers to re-

trieve only a subset of genomic data they are interested in.

This use case represents a collocation of VMs, which are on an

infrastructure layer, with a database offered on a software layer,

thus providing an unique platform for running genomic appli-

cations. A similar scenario can be found in Amazon Web Ser-

vices, Inc. (2013a) where a customer can utilize additional hard-

ware and software products along with deployed VMs. Heroku

also provides a large set of add-ons (Heroku Inc., 2013), i.e.,

software products that can be referenced within customer ap-

plications.
• Web hosting: A web developer wants to migrate a web appli-

cation to a Cloud in order to benefit from a highly available and

scalable environment. However, the customer does not want to

manually configure and manage the environment, but rather

have it all done automatically.

This use case represents a traditional PaaS where a customer

deploys an application on a targeted platform. Google App En-

gine (Google Inc., 2013) enables deploying Java and Python web

applications on a managed Cloud platform that is completely

transparent to a customer. Heroku Inc. (2013) offers a Ruby on

Rails environment deployed on top of Amazon EC2. The plat-

form is completely managed by the provider, while customers

only interface with provided runtimes, databases and add-ons.

Windows Azure (Microsoft Corporation, 2013) supports deploy-

ment of web and non-web applications in a Windows runtime

for a variety of programming languages.
• Email: Private and business customers require online access to

an email service. The customers pay the service per registered

user and the amount of used storage, while not considering the

implementation details of the service.

This is a standard SaaS example where a provider is responsible

for a service infrastructure, including entire hardware and soft-

ware stack. Customers access the service through a web client

and interact with the software over its web interface. Entire

management of the service is done by a provider, including

software updates, environment scaling and security. Examples

Please cite this article as: T. Mastelić et al., Towards uniform management of multi-layered cloud services by applying model-driven

development, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.01.001

http://dx.doi.org/10.1016/j.jss.2016.01.001


Download English Version:

https://daneshyari.com/en/article/6885460

Download Persian Version:

https://daneshyari.com/article/6885460

Daneshyari.com

https://daneshyari.com/en/article/6885460
https://daneshyari.com/article/6885460
https://daneshyari.com

