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a b s t r a c t 

Technical Debt is created when design decisions that are expedient in the short term increase the costs 

of maintaining and adapting this system in future. An important component of technical debt relates to 

decisions about system architecture. As systems grow and evolve, their architectures can degrade, increas- 

ing maintenance costs and reducing developer productivity. This raises the question if and when it might 

be appropriate to redesign (“refactor”) a system, to reduce what has been called “architectural debt”. 

Unfortunately, we lack robust data by which to evaluate the relationship between architectural design 

choices and system maintenance costs, and hence to predict the value that might be released through 

such refactoring efforts. 

We address this gap by analyzing the relationship between system architecture and maintenance costs 

for two software systems of similar size, but with very different structures; one has a “Hierarchical” de- 

sign, the other has a “Core-Periphery” design. We measure the level of system coupling for the 20,0 0 0 + 

components in each system, and use these measures to predict maintenance efforts, or “defect-related ac- 

tivity.” We show that in both systems, the tightly-coupled Core or Central components cost significantly 

more to maintain then loosely-coupled Peripheral components. In essence, a small number of compo- 

nents generate a large proportion of system costs. However, we find major differences in the potential 

benefits available from refactoring these systems, related to their differing designs. Our results generate 

insight into how architectural debt can be assessed by understanding patterns of coupling among com- 

ponents in a system. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

How do system design decisions affect the long-term costs of 

system maintenance? A wealth of studies has examined the topic 

of system design, developing insights into how decisions should 

be made during the development of new technological systems 

( Banker et al., 1993; Banker and Slaughter, 20 0 0 ). This work re- 

veals the critical impact of architectural choices in creating a de- 

sign that can meet requirements along multiple, sometimes com- 

peting, dimensions of performance (e.g., functionality, speed, ease 

of use, reliability, upgradeability etc.). Fewer studies however, have 

explored how system design decisions affect performance in the 

mature stage of a system’s life, where maintenance and adaptation 

costs are relatively more important. Given prior work argues that 

these costs can represent up to 90% of the total expenditures over 

a system’s lifetime, this represents a significant gap in our knowl- 

edge ( Brooks, 1975 ). 
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This topic is especially relevant to the software industry, given 

the dynamics of how software is developed. In particular, software 

systems rarely die. Instead, each new version forms a platform 

upon which subsequent versions are built. With this approach, 

today’s developers bear the consequences of all design decisions 

made in the past ( MacCormack et al., 2007 ). However, the early 

designers of a system may have different objectives from those 

that follow, especially if the system is successful and long lasting 

(something that may be uncertain at the time of its birth). For ex- 

ample, if early designers favor approaches that are expedient in 

the short term (say, to speed up time to market), later designers 

will bear the consequences of those decisions. Furthermore, as the 

external context for a system evolves over time, even design deci- 

sions that were made correctly may become obsolete and require 

revisiting ( Kruchten et al., 2012a ). 

These dynamics raise an interesting question, in that for 

many mature systems, significant potential value might be re- 

leased through design changes to reduce a system’s complexity 

while maintaining its functionality (known as “refactoring”). Un- 

fortunately, decision makers have little empirical data by which 

to evaluate the value that might be generated by such effort s 
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( MacCormack et al., 2006 ). While a software architect might in- 

tuitively recognize the potential benefits of architectural change, 

senior managers typically require a robust assessment of the fi- 

nancial consequences of change, before funding such effort s. This 

need, to link software design decisions with their financial conse- 

quences, has given rise to a new metaphor, Technical Debt. It cap- 

tures the extent to which design decisions that are expedient in the 

short-term can lead to increased system costs in future ( Brown et al., 

2010; Kruchten et al., 2012a ). 

In this paper, we attempt to bridge the worlds of software ar- 

chitecture and finance. In particular, we evaluate the relationship 

between system design decisions and the costs of maintenance for 

two software systems that represent different design “Archetypes”

– one possesses a Core-Periphery design, the other possesses a 

Hierarchical design. We characterize system design using a net- 

work analysis technique called Design Structure Matrices (DSMs) 

( Steward, 1981; Eppinger et al., 1994 ). Our analysis allows us to 

calculate the level of coupling for components in each system, 

and thereby to identify which are more central to the design, and 

which are peripheral. We then analyze the extent to which compo- 

nents with different levels of network coupling generate different 

maintenance costs (i.e., in terms of the activity required to fix de- 

fects) in these systems. Our results allow us to speculate on the 

potential value that could be released by a refactoring effort, and 

to assess whether this differs between different system types. 

The paper proceeds as follows. In the next section, we review 

the prior literature on Technical Debt and system design, focus- 

ing on work that explores how measures of system design predict 

the costs of maintenance. We then describe our methods, which 

make use of Design Structure Matrices (DSMs) to understand sys- 

tem structure, and measure the level of coupling between compo- 

nents. Next, we introduce the context for our study and describe 

the two systems that we analyze. Finally, we report our empirical 

results and discuss their potential implications for both practition- 

ers and academia. 

2. Literature review 

2.1. Technical debt in software systems 

In a software system, design decisions that systematically favor 

short-term gains over long-term costs create what is called “tech- 

nical debt” ( Cunningham, 1992; McConnell, 2007 ). These debts 

arise from, among other things, poor design practices, inadequate 

testing procedures, missing documentation, or excessively interde- 

pendent architectures ( Brown et al., 2010; Seaman and Guo, 2011; 

Kruchten et al., 2012a, 2012b; Li et al., 2015 ). The interest on these 

debts comes in the form of increased costs for maintenance and 

adaptation in future. For smaller software systems, these costs may 

not be significant, hence not worth addressing. But as a system 

grows and evolves, these costs can become substantial and an in- 

creasing burden on development teams ( Eick et al., 1999 ). Evolu- 

tions in the external context may also render past design choices 

outdated, creating a “technological gap” between an existing de- 

sign and current requirements ( Kruchten et al., 2012a ). Where such 

technical debts exist, opportunities to create value through re- 

design may exist, assuming the value released exceeds the cost of 

taking action ( Sarker et al., 2009; Schmid, 2013 ). 

Early work in the field of technical debt focused on describ- 

ing the phenomenon, and developing typologies for the different 

types of debt that can affect a system ( Guo and Seaman, 2011; 

Kruchten et al., 2012a; Tom et al., 2013 ). For example, Kruchten 

et al., (2012a) propose a technical debt “landscape,” which divides 

software improvements from a given state along two dimensions: 

whether they are visible or invisible; and whether they focus on 

maintainability or evolvability. Early empirical studies emphasized 

understanding the debts associated with lower-level decisions sur- 

rounding code complexity, coding style, code “smells” and poor 

system documentation ( Brown et al., 2010 ). Tools based upon these 

approaches focus on the degree to which a software system fol- 

lows, or departs from, common coding “rules” (e.g., sonarcube.org). 

To make the concept of Technical Debt operational, significant ef- 

forts have been made to define metrics that capture both the to- 

tality of the debt in a system, as well as the drivers of different 

components of this debt ( Seaman and Guo, 2011; Nughoro et al., 

2011 ). 

More recently, attention has been given to how higher-level de- 

sign decisions associated with a system’s architecture impact tech- 

nical debt ( Nord et al., 2012; Kazman et al., 2015; Xiao et al., 2016 ). 

As Kruchten et al., (2012a) argue, “more often than not , technical 

debt isn’t related to code and its intrinsic qualities, but to struc- 

tural or architectural choices….” Of particular interest to this study, 

several authors have developed metrics to capture structural prop- 

erties of software systems, to be used to evaluate architectural debt 

( MacCormack et al., 2006; 2012; Nord et al., 2012; Kruchten et al., 

2012b; Kazman et al., 2015 ). While the specifics of these metrics 

differ by study, they retain a common theme in that they focus on 

measuring the coupling in a system. This is achieved by examining 

direct and indirect dependencies between system components. 

2.2. The design of complex technological systems 

A large number of studies have contributed to our understand- 

ing of the design of complex systems ( Holland, 1992; Kaufman, 

1993; Rivkin, 20 0 0; Rivkin and Siggelkow, 2007 ). Many of these 

studies are situated in the field of technology management, explor- 

ing factors that influence the design of physical or information- 

based products ( Braha et al., 2006 ). Products are complex sys- 

tems in that they comprise a large number of components with 

many interactions between them. The scheme by which a product’s 

functions are allocated to components is called its “architecture”

( Ulrich, 1995; Whitney et al., 2004 ). Understanding how architec- 

tures are chosen, how they perform and how they can be changed 

are critical topics in the study of complex systems. 

Modularity is a concept that helps us to characterize archi- 

tecture. It refers to the way that a product’s design is decom- 

posed into parts. While there are many definitions of modularity, 

authors tend to agree on the concepts that lie at its heart: The 

notion of interdependence within modules and independence be- 

tween modules ( Ulrich, 1995 ). The latter concept is referred to as 

“loose-coupling.” Modular architectures are loosely-coupled in that 

changes made to one component have little impact on others. The 

costs and benefits of modularity have been discussed in a stream 

of research that has examined its impact on complexity ( Simon, 

1962 ), production ( Ulrich, 1995 ), platform design ( Sanderson and 

Uzumeri, 1995 ), process design ( MacCormack et al., 2001 ) pro- 

cess improvement ( Spear and Bowen, 1999 ) and industry structure 

( Baldwin and Clark, 20 0 0 ). 

Studies that seek to measure the modularity of technical sys- 

tems typically focus on capturing the level of coupling that ex- 

ists between different parts of a design. In this respect, the most 

prominent technique comes from the field of engineering, in the 

form of the Design Structure Matrix (DSM). A DSM highlights the 

inherent structure of a design by examining the dependencies that 

exist between its constituent elements in a square matrix ( Steward, 

1981; Eppinger et al., 1994 ). These elements can represent design 

tasks, design parameters or the components that comprise the sys- 

tem. DSMs have also been used to explore the degree of align- 

ment between task dependencies and project team communica- 

tions ( Sosa et al., 2004 ). Recent work has extended this method- 

ology to show how dependencies can be extracted automatically 

from software source code and used to understand system design 
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