
ARTICLE IN PRESS

JID: JSS [m5G; June 17, 2016;14:44]

The Journal of Systems and Software 0 0 0 (2016) 1–13

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Technical debt and system architecture: The impact of coupling on

defect-related activity

Alan MacCormack

∗, Daniel J. Sturtevant

Harvard Business School, Soldiers Field, Boston, MA 02163, United States

a r t i c l e i n f o

Article history:

Received 31 May 2015

Revised 28 May 2016

Accepted 4 June 2016

Available online xxx

Keywords:

Technical debt

Software architecture

Software maintenance

Modularity

Complexity

a b s t r a c t

Technical Debt is created when design decisions that are expedient in the short term increase the costs

of maintaining and adapting this system in future. An important component of technical debt relates to

decisions about system architecture. As systems grow and evolve, their architectures can degrade, increas-

ing maintenance costs and reducing developer productivity. This raises the question if and when it might

be appropriate to redesign (“refactor”) a system, to reduce what has been called “architectural debt”.

Unfortunately, we lack robust data by which to evaluate the relationship between architectural design

choices and system maintenance costs, and hence to predict the value that might be released through

such refactoring efforts.

We address this gap by analyzing the relationship between system architecture and maintenance costs

for two software systems of similar size, but with very different structures; one has a “Hierarchical” de-

sign, the other has a “Core-Periphery” design. We measure the level of system coupling for the 20,0 0 0 +

components in each system, and use these measures to predict maintenance efforts, or “defect-related ac-

tivity.” We show that in both systems, the tightly-coupled Core or Central components cost significantly

more to maintain then loosely-coupled Peripheral components. In essence, a small number of compo-

nents generate a large proportion of system costs. However, we find major differences in the potential

benefits available from refactoring these systems, related to their differing designs. Our results generate

insight into how architectural debt can be assessed by understanding patterns of coupling among com-

ponents in a system.

© 2016 Published by Elsevier Inc.

1. Introduction

How do system design decisions affect the long-term costs of

system maintenance? A wealth of studies has examined the topic

of system design, developing insights into how decisions should

be made during the development of new technological systems

(Banker et al., 1993; Banker and Slaughter, 20 0 0). This work re-

veals the critical impact of architectural choices in creating a de-

sign that can meet requirements along multiple, sometimes com-

peting, dimensions of performance (e.g., functionality, speed, ease

of use, reliability, upgradeability etc.). Fewer studies however, have

explored how system design decisions affect performance in the

mature stage of a system’s life, where maintenance and adaptation

costs are relatively more important. Given prior work argues that

these costs can represent up to 90% of the total expenditures over

a system’s lifetime, this represents a significant gap in our knowl-

edge (Brooks, 1975).

∗ Corresponding author. Tel.: +1 617-4 95-6 856.

E-mail addresses: amaccormack@hbs.edu (A. MacCormack), dsturtevant@hbs.edu

(D.J. Sturtevant).

This topic is especially relevant to the software industry, given

the dynamics of how software is developed. In particular, software

systems rarely die. Instead, each new version forms a platform

upon which subsequent versions are built. With this approach,

today’s developers bear the consequences of all design decisions

made in the past (MacCormack et al., 2007). However, the early

designers of a system may have different objectives from those

that follow, especially if the system is successful and long lasting

(something that may be uncertain at the time of its birth). For ex-

ample, if early designers favor approaches that are expedient in

the short term (say, to speed up time to market), later designers

will bear the consequences of those decisions. Furthermore, as the

external context for a system evolves over time, even design deci-

sions that were made correctly may become obsolete and require

revisiting (Kruchten et al., 2012a).

These dynamics raise an interesting question, in that for

many mature systems, significant potential value might be re-

leased through design changes to reduce a system’s complexity

while maintaining its functionality (known as “refactoring”). Un-

fortunately, decision makers have little empirical data by which

to evaluate the value that might be generated by such effort s

http://dx.doi.org/10.1016/j.jss.2016.06.007

0164-1212/© 2016 Published by Elsevier Inc.

Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical debt and system architecture: The impact of coupling on defect-

related activity, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.007

http://dx.doi.org/10.1016/j.jss.2016.06.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:amaccormack@hbs.edu
mailto:dsturtevant@hbs.edu
http://dx.doi.org/10.1016/j.jss.2016.06.007
http://dx.doi.org/10.1016/j.jss.2016.06.007

2 A. MacCormack, D.J. Sturtevant / The Journal of Systems and Software 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: JSS [m5G; June 17, 2016;14:44]

(MacCormack et al., 2006). While a software architect might in-

tuitively recognize the potential benefits of architectural change,

senior managers typically require a robust assessment of the fi-

nancial consequences of change, before funding such effort s. This

need, to link software design decisions with their financial conse-

quences, has given rise to a new metaphor, Technical Debt. It cap-

tures the extent to which design decisions that are expedient in the

short-term can lead to increased system costs in future (Brown et al.,

2010; Kruchten et al., 2012a).

In this paper, we attempt to bridge the worlds of software ar-

chitecture and finance. In particular, we evaluate the relationship

between system design decisions and the costs of maintenance for

two software systems that represent different design “Archetypes”

– one possesses a Core-Periphery design, the other possesses a

Hierarchical design. We characterize system design using a net-

work analysis technique called Design Structure Matrices (DSMs)

(Steward, 1981; Eppinger et al., 1994). Our analysis allows us to

calculate the level of coupling for components in each system,

and thereby to identify which are more central to the design, and

which are peripheral. We then analyze the extent to which compo-

nents with different levels of network coupling generate different

maintenance costs (i.e., in terms of the activity required to fix de-

fects) in these systems. Our results allow us to speculate on the

potential value that could be released by a refactoring effort, and

to assess whether this differs between different system types.

The paper proceeds as follows. In the next section, we review

the prior literature on Technical Debt and system design, focus-

ing on work that explores how measures of system design predict

the costs of maintenance. We then describe our methods, which

make use of Design Structure Matrices (DSMs) to understand sys-

tem structure, and measure the level of coupling between compo-

nents. Next, we introduce the context for our study and describe

the two systems that we analyze. Finally, we report our empirical

results and discuss their potential implications for both practition-

ers and academia.

2. Literature review

2.1. Technical debt in software systems

In a software system, design decisions that systematically favor

short-term gains over long-term costs create what is called “tech-

nical debt” (Cunningham, 1992; McConnell, 2007). These debts

arise from, among other things, poor design practices, inadequate

testing procedures, missing documentation, or excessively interde-

pendent architectures (Brown et al., 2010; Seaman and Guo, 2011;

Kruchten et al., 2012a, 2012b; Li et al., 2015). The interest on these

debts comes in the form of increased costs for maintenance and

adaptation in future. For smaller software systems, these costs may

not be significant, hence not worth addressing. But as a system

grows and evolves, these costs can become substantial and an in-

creasing burden on development teams (Eick et al., 1999). Evolu-

tions in the external context may also render past design choices

outdated, creating a “technological gap” between an existing de-

sign and current requirements (Kruchten et al., 2012a). Where such

technical debts exist, opportunities to create value through re-

design may exist, assuming the value released exceeds the cost of

taking action (Sarker et al., 2009; Schmid, 2013).

Early work in the field of technical debt focused on describ-

ing the phenomenon, and developing typologies for the different

types of debt that can affect a system (Guo and Seaman, 2011;

Kruchten et al., 2012a; Tom et al., 2013). For example, Kruchten

et al., (2012a) propose a technical debt “landscape,” which divides

software improvements from a given state along two dimensions:

whether they are visible or invisible; and whether they focus on

maintainability or evolvability. Early empirical studies emphasized

understanding the debts associated with lower-level decisions sur-

rounding code complexity, coding style, code “smells” and poor

system documentation (Brown et al., 2010). Tools based upon these

approaches focus on the degree to which a software system fol-

lows, or departs from, common coding “rules” (e.g., sonarcube.org).

To make the concept of Technical Debt operational, significant ef-

forts have been made to define metrics that capture both the to-

tality of the debt in a system, as well as the drivers of different

components of this debt (Seaman and Guo, 2011; Nughoro et al.,

2011).

More recently, attention has been given to how higher-level de-

sign decisions associated with a system’s architecture impact tech-

nical debt (Nord et al., 2012; Kazman et al., 2015; Xiao et al., 2016).

As Kruchten et al., (2012a) argue, “more often than not , technical

debt isn’t related to code and its intrinsic qualities, but to struc-

tural or architectural choices….” Of particular interest to this study,

several authors have developed metrics to capture structural prop-

erties of software systems, to be used to evaluate architectural debt

(MacCormack et al., 2006; 2012; Nord et al., 2012; Kruchten et al.,

2012b; Kazman et al., 2015). While the specifics of these metrics

differ by study, they retain a common theme in that they focus on

measuring the coupling in a system. This is achieved by examining

direct and indirect dependencies between system components.

2.2. The design of complex technological systems

A large number of studies have contributed to our understand-

ing of the design of complex systems (Holland, 1992; Kaufman,

1993; Rivkin, 20 0 0; Rivkin and Siggelkow, 2007). Many of these

studies are situated in the field of technology management, explor-

ing factors that influence the design of physical or information-

based products (Braha et al., 2006). Products are complex sys-

tems in that they comprise a large number of components with

many interactions between them. The scheme by which a product’s

functions are allocated to components is called its “architecture”

(Ulrich, 1995; Whitney et al., 2004). Understanding how architec-

tures are chosen, how they perform and how they can be changed

are critical topics in the study of complex systems.

Modularity is a concept that helps us to characterize archi-

tecture. It refers to the way that a product’s design is decom-

posed into parts. While there are many definitions of modularity,

authors tend to agree on the concepts that lie at its heart: The

notion of interdependence within modules and independence be-

tween modules (Ulrich, 1995). The latter concept is referred to as

“loose-coupling.” Modular architectures are loosely-coupled in that

changes made to one component have little impact on others. The

costs and benefits of modularity have been discussed in a stream

of research that has examined its impact on complexity (Simon,

1962), production (Ulrich, 1995), platform design (Sanderson and

Uzumeri, 1995), process design (MacCormack et al., 2001) pro-

cess improvement (Spear and Bowen, 1999) and industry structure

(Baldwin and Clark, 20 0 0).

Studies that seek to measure the modularity of technical sys-

tems typically focus on capturing the level of coupling that ex-

ists between different parts of a design. In this respect, the most

prominent technique comes from the field of engineering, in the

form of the Design Structure Matrix (DSM). A DSM highlights the

inherent structure of a design by examining the dependencies that

exist between its constituent elements in a square matrix (Steward,

1981; Eppinger et al., 1994). These elements can represent design

tasks, design parameters or the components that comprise the sys-

tem. DSMs have also been used to explore the degree of align-

ment between task dependencies and project team communica-

tions (Sosa et al., 2004). Recent work has extended this method-

ology to show how dependencies can be extracted automatically

from software source code and used to understand system design

Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical debt and system architecture: The impact of coupling on defect-

related activity, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.007

http://dx.doi.org/10.1016/j.jss.2016.06.007

Download English Version:

https://daneshyari.com/en/article/6885464

Download Persian Version:

https://daneshyari.com/article/6885464

Daneshyari.com

https://daneshyari.com/en/article/6885464
https://daneshyari.com/article/6885464
https://daneshyari.com

