
The Journal of Systems and Software 119 (2016) 31–44

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software architectural principles in contemporary mobile software:

from conception to practice

Hamid Bagheri a , ∗, Joshua Garcia

a , Alireza Sadeghi a , Sam Malek

a , Nenad Medvidovic

b

a School of Information and Computer Sciences, University of California, Irvine, United States
b Computer Science Department, University of Southern California, United States

a r t i c l e i n f o

Article history:

Received 3 May 2015

Revised 23 May 2016

Accepted 25 May 2016

Available online 1 June 2016

Keywords:

Software architecture

Android

Architectural styles

a b s t r a c t

The meteoric rise of mobile software that we have witnessed in the past decade parallels a paradigm

shift in its design, construction, and deployment. In particular, we argue that today’s mobile software,

with its rich ecosystem of apps, would have not been possible without the pioneering advances in soft-

ware architecture research in the decade that preceded it. We describe the drivers that elevated software

architecture to the centerpiece of contemporary mobile software. We distill the architectural principles

found in Android, the predominant mobile platform with the largest market share, and trace those prin-

ciples to their conception at the turn of century in software architecture literature. Finally, to better un-

derstand the extent to which Android’s ecosystem of apps employs architectural concepts, we mine the

reverse-engineered architecture of hundreds of Android apps in several app markets and report on those

results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mobile computing has come a long way from a decade ago. De-

velopment of mobile software used to be an art exercised by a

few, savvy, experienced developers, capable of hacking low-level

C code—the lingua franca of mobile software at the time. The re-

sulting software systems were often monolithic, rigid, one-off pro-

grams, which were hard to construct, understand, and maintain

(Picco et al., 2014). Although software architectural principles had

found widespread use in structuring the traditional desktop soft-

ware at the turn of century (Taylor et al., 2009), mobile software

was often devoid of such structures (Picco et al., 2014; Medvidovic

et al., 2003).

The dominant preconception was that for developing effi-

cient software, suitable for deployment on resource-constrained

mobile platforms, it is necessary to compromise on flexibility

and decoupling achieved through architectural principles, such

as decomposition of a software system into components, separa-

tion of communication links in the form of connectors, and so

on Medvidovic et al. (2003) ; Malek et al. (2007) . In particular,

programming-language abstractions needed for the realization of

∗ Corresponding author.

E-mail addresses: hamidb@uci.edu (H. Bagheri), joshug4@uci.edu (J. Garcia),

alirezs1@uci.edu (A. Sadeghi), malek@uci.edu (S. Malek), neno@usc.edu (N. Medvi-

dovic).

those architectural concepts were deemed unsuitable for use in

mobile software.

Today’s mobile software, however, differs greatly from that of

a decade ago (Wasserman, 2010). Our empirical investigation—the

details of which are described in Section 5 —shows that software

architecture plays a significant role in the development of modern

mobile software. Many of the ideas devised in pioneering software

architecture work, developed around the turn of this century, have

found a home in the contemporary mobile software. In particu-

lar, Android, which is the predominant mobile platform, realizes

many of the architectural principles previously advocated by the

software-engineering community.

At first blush, one may conjecture that the increasing promi-

nence of software architectural principles is a natural progression

of software-engineering practices in any computing domain. But

when we look at other closely related areas of computing, such

as embedded software, we do not find a similar adoption of soft-

ware architectures. It is, thus, important to understand the drivers

behind the rapid adoption of software architectures in mobile com-

puting, as well as the nature of the adopted architectural concepts

and principles, and how their use has impacted the development

of mobile software.

To that end, we first describe several requirements that drove

the adoption of many of the architectural principles advocated in

the literature in modern mobile software development. We also

trace back those principles to their conception in the pioneering

software-architecture research, in particular the research on the

http://dx.doi.org/10.1016/j.jss.2016.05.039

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.05.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.05.039&domain=pdf
mailto:hamidb@uci.edu
mailto:joshug4@uci.edu
mailto:alirezs1@uci.edu
mailto:malek@uci.edu
mailto:neno@usc.edu
http://dx.doi.org/10.1016/j.jss.2016.05.039

32 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

applicability and benefits of architecture-based design and devel-

opment in a mobile setting. Afterwards, we present some of the

key architectural concepts found in Android, often codified in its

application development framework , which provides programming-

language constructs for architecture-based development of mobile

software, including support for the realization of software compo-

nents, connectors, events, configurations, and architectural styles.

We argue that software architectural support in Android has

played a key role in its meteoric rise and success. Our empiri-

cal observation corroborates the notion that architectural building

blocks in Android are supported in the Android platform’s pro-

gramming constructs, which promises to dramatically improve an

app developer’s productivity, and also makes it much easier to de-

velop complex apps without a formal education in programming,

or previous programming experience. This, in turn, supports even

novice programmers in developing sophisticated apps with the po-

tential of becoming popular in app markets, such as Google play .

Codification of an architectural family and separation of communi-

cation from the application logic, using asynchronous connectors,

have facilitated the integration of third-party code in a mobile de-

vice, thereby directly spawning a vibrant ecosystem of apps.

The contributions of this paper can be summarized as follows:

• Identifies the drivers behind the rapid adoption of software ar-

chitecture concepts and principles in contemporary mobile soft-

ware, specifically Android.
• Distills the architectural principles found in Android and illus-

trates them using a popular mobile app.
• Traces back those principles to their conception in software-

architecture research.
• Reports on the characteristics of architectures found in the An-

droid ecosystem of apps by mining hundreds of Android apps

in several app markets.
• Reflects on deviations from how architectural concepts have

been prescribed in architecture literature and the manner in

which Android has realized some of those concepts, thereby

concluding with lessons that could be of interest to both the

mobile-computing industry as well as software-architecture re-

searchers.

The remainder of the paper is organized as follows.

Section 2 outlines the mobile-computing requirements that drove

the adoption of software architectures. Section 3 describes a popu-

lar mobile app that we use to illustrate the architectural concepts

in Android. Section 4 presents the key architectural principles

followed by Android as well as their conception in the literature

that predates it. Section 5 reports on the architectural properties

of hundreds of reverse-engineered apps. Section 6 discusses the

salient outcomes of our study. Finally, the paper concludes with

an outline of the related research in Section 7 and an overview of

our contributions in Section 8 .

2. Mobile computing drivers

Before describing the architectural concepts found in contempo-

rary mobile software, it is important to understand the key chal-

lenges that the mobile-computing industry has had to overcome

over the past decade. The need to overcome these challenges is

the root cause of the drastic shift toward the adoption of software

architectures in today’s mobile software.

(D1) App ecosystem. Perhaps the most striking difference be-

tween today’s mobile platforms and those of a decade ago is the

notion of app ecosystem . An app ecosystem is the interaction of a

set of independently developed software elements (apps) on top

of a common computing platform that results in a number of

software solutions or services (Manikas and Hansen, 2013; Bosch,

2009). App stores and apps have changed the landscape of mo-

bile computing: entrepreneurs are able to reach a large consumer

market, consumers can choose from thousands of apps at a nom-

inal cost, and app advertising has created a lucrative form of rev-

enue for the developers. Apps extend the capabilities available on a

platform, making the platform more attractive to the users. There-

fore, a vibrant app ecosystem is crucial to the success of a mo-

bile platform, such as Android. A key challenge in conceiving such

platforms, however, was encoding constraints and rules to enable

a properly functioning ecosystem with certain norms of structure

and behavior, yet remaining sufficiently flexible to allow the devel-

opers to fully exploit the capabilities available on modern mobile

devices (Eklund and Bosch, 2014).

(D2) Developer productivity. As alluded to earlier, the de-

velopment of mobile software previously involved low-level pro-

gramming, often against the various device drivers, akin to the

kind of practices still followed in the embedded-computing do-

main (Malek et al., 2007). At the same time, the success of an app

ecosystem, and thus the corresponding mobile platform, hinges on

the availability of a large number of apps for end users to choose

from. Such an app ecosystem requires a large pool of qualified de-

velopers capable of creating apps without highly specialized skills.

Thus, the awareness grew that mobile platforms vying for a vibrant

app ecosystem need to provide the developers with high-level im-

plementation abstractions, and properly-enforced rules and con-

straints on how those abstractions can be composed, to ease the

construction of apps.

(D3) Interoperability. A particular challenge in conceiving the

modern mobile-computing platforms lied in providing a rich user

experience, where a mobile device’s native capabilities (e.g., phone,

camera, and GPS) as well as third-party apps are able to integrate

and interact with one another. Achieving this objective requires in-

teroperability between third-party apps that are developed inde-

pendently, and possibly without knowledge of one another, as well

as software and hardware services that are available on a multi-

tude of proprietary devices (Ebert and Jones, 2009). This challenge

called for explicit specification of exposed interfaces of apps, as

well as standards, rules, and architectural styles that regulate the

interactions of apps and system services.

(D4) Security and privacy. Seamless interoperability between

apps, together with the various private user data collected on mod-

ern mobile devices, gave prominence to security and privacy issues

(La Polla et al., 2013). In addition, the app-store model of provi-

sioning apps proved convenient not only for the end users, but

also for the malware writers that exploited it for delivering ma-

licious code into the users’ devices (Zhang et al., 2013). To com-

bat these threats, proper abstractions were needed for specifica-

tion, assessment, and enforcement of security properties (e.g., in-

formation flow and access control) at a higher level of granularity

than code.

(D5) Resource constraints. Finally, as the apps deployed on

mobile platforms continued to grow in size and complexity, re-

source constraints (e.g., energy and memory) continued to pose

an ever-present challenge. Specifically, there was a need to man-

age and coordinate the resources consumed by third-party apps

(Nikzad et al., 2014). As an example, consider that many apps may

require access to GPS information, but an uncoordinated access to

such information rapidly drains the battery of a mobile device.

Similarly, multiple apps may be running on a mobile device, but

at any point in time only parts of those apps are actively used;

without dynamically offloading the unused elements at runtime, a

device would run out of resources rapidly. 1 To address these chal-

1 Note that in this paper the term “offload” is used to mean temporarily removing

a task from processor/memory to make them available for other tasks. It should not

Download English Version:

https://daneshyari.com/en/article/6885470

Download Persian Version:

https://daneshyari.com/article/6885470

Daneshyari.com

https://daneshyari.com/en/article/6885470
https://daneshyari.com/article/6885470
https://daneshyari.com

