
The Journal of Systems and Software 119 (2016) 70–86

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Real-time hierarchical systems with arbitrary scheduling at global

level

Ana Guasque, Patricia Balbastre

1 , ∗, Alfons Crespo

Universitat Politècnica de València, Valencia, ES, 46022, Spain

a r t i c l e i n f o

Article history:

Received 22 February 2016

Revised 4 May 2016

Accepted 26 May 2016

Available online 27 May 2016

Keywords:

Real-time systems

Partitioned systems

Embedded systems

Real-time systems scheduling

Real-time algorithms

a b s t r a c t

Partitioned architectures isolate software components into independent partitions whose execution will

not interfere with other partitions, preserving temporal and spatial isolation. Hierarchical scheduling can

effectively be used to schedule these systems. Schedulability analysis of hierarchical real-time systems is

based on prior knowledge of the local and the global scheduling algorithms.

In a partitioned system with safety and security issues and certification assurance levels, global schedul-

ing is usually generated using a static table. Therefore, each partition must allocate task jobs only in the

temporal windows reserved for that partition. Even if the static table can come originally from a periodic

server or other scheduling policy, the final plan may be modified due to changes in the system require-

ments. As a consequence, the CPU assignment to a partition does not have to correspond to any known

policy. In this case, it is not possible to use existing scheduling analysis for hierarchical systems.

This paper studies a new scheduling problem: a hierarchical system in which global policy is not known

but provided as a set of arbitrary time windows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In many domains such as avionics, space or industrial control

systems, hard real-time constraints, safety and security issues and

certification assurance levels are commonly required. Integrated

Modular Avionics (IMA) is an architectural proposal that emerged

as a design concept to integrate several applications with differ-

ent levels of criticality in a hardware platform. The IMA approach

proposes to encapsulate functions into partitions configuring a par-

titioned system. Partitioned architectures isolate software compo-

nents into independent partitions whose execution must not inter-

fere with others, preserving temporal and spatial isolation. Several

projects have been successfully developed using this approach in

the avionic market.

In the last decade, the European space sector has adapted the

initial IMA approach for the space requirements for the new gen-

eration of satellites (Windsor and Hjortnaes, 2009). The IMA-SP

project focused on mono-processors (IMA-SP, 2011-13a). The plat-

∗ Corresponding author.

E-mail addresses: anguaor@ai2.upv.es (A. Guasque), patricia@ai2.upv.es

(P. Balbastre), acrespo@ai2.upv.es (A. Crespo).
1 This work has been funded by the Spanish government under grant TIN2014-

56158-C4-1-P-AR and by the European Commission under FP7-ICT-2013.3.4 Pro-

gramme with grant 610640

form defines a virtualization layer (hypervisor) that permits exe-

cution of several partitions. Each partition can contain a guest op-

erating system and the application software. The hypervisor is in

charge of ensuring temporal and spatial isolation of partitions.

An IMA development process involves several roles like:

• System Architect (SA): The SA is responsible for defining the

overall system requirements and system design, including opti-

mal decomposition into hosted partitions jointly with the de-

tailed resource allocation per partition.
• System Integrator (SI): The SI is responsible for verifying the

feasibility of the system requirements defined by the SA, as

well as responsible for the configuration and integration of all

components.
• Application Suppliers (AS): An AS is responsible for developing

an application according to the overall requirements from the

SA and the SI. AS must verify compliance with the allocated

budget and safety parameters. Assuming that each application

is located in a partition and a partition can have only one ap-

plication, an AS can also be called Partition Developer (PD).

There are other roles in the process but due to space restric-

tions we only detail those interesting for the purpose of this arti-

cle. For a complete description of the main roles and responsibili-

ties see (IMA-SP, 2011-13b).

http://dx.doi.org/10.1016/j.jss.2016.05.040

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.05.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.05.040&domain=pdf
mailto:anguaor@ai2.upv.es
mailto:patricia@ai2.upv.es
mailto:acrespo@ai2.upv.es
http://dx.doi.org/10.1016/j.jss.2016.05.040

A. Guasque et al. / The Journal of Systems and Software 119 (2016) 70–86 71

Fig. 1. General overview of the partitioned system.

Fig. 2. Execution chronogram and CPU supply of a partition.

A key element in the development process and the final execu-

tion is the configuration of the system defined by the SA, which

includes the description of the components and resource alloca-

tion. This is identified as configuration data or configuration file.

In order to preserve the confidentiality of the development pro-

cess, configuration data is split and delivered to each PD with the

required information for developing the application.

The SI is responsible for CPU allocation of temporal resources

to applications while the PD manages the time budget assigned

to its tasks by the SI. Based on the proposed software architec-

ture in an IMA system where a hypervisor supports the execution

of several temporal and spatial isolated partitions, the system can

be modeled as a hierarchical real-time system in which tasks are

allocated to partitions. The SI allocates CPU in the global level, ac-

cording to the scheduling algorithm of its choice, while the PD in-

ternally schedules tasks with its own scheduling algorithm and the

assigned CPU budget. The SI is responsible for ensuring feasibility

in the global level while PD ensures feasibility in the correspond-

ing local level. Fig. 1 shows the structure of a partitioned system.

The scheduling plan in the global level schedules partitions accord-

ing to an offline plan defined in the static configuration file of the

system.

Thus, a partition does not have all the time assigned to sched-

ule its tasks, but only certain slots throughout the hyper-period. An

example is shown in Fig. 2 , where a partition with a set of periodic

tasks is scheduled under EDF (Earliest Deadline First) policy.

In the previous figure, the global scheduler peridically assigns

the CPU to the task set, that is, the partition receives a periodic re-

source supply that provides 3 units of CPU every 10 units of time.

The black rectangles at the bottom of the figure represent the slots

assigned to the partition. Obviously, tasks cannot execute outside

these slots, since they are reserved for other partitions.

The list of assigned slots is provided by the SI, responsible for

ensuring the feasibility in the global level. Thus, PD gives the SI its

temporal requirements, normally in the form of CPU bandwidth.

The SI calculates and assigns this bandwidth to partitions using

a well known bandwidth server or cyclic scheduling. ARINC 653

standard (Avionics Application Software Standard Interface, ARINC-

653) defines a hierarchical scheduling where a static cyclic execu-

tive scheduler is used in the global level.

If the assignment is made using a bandwidth algorithm or a pe-

riodic resource model, the corresponding feasibility tests are avail-

able in the literature so the PD can apply them to know if its tasks

are schedulable with this slots assignment (see Section 8). On the

contrary, if the SI makes the asignment arbitrarily (i.e. not follow-

ing any existing scheduling algorithm) the authors are not aware

of any article that addresses and solves this problem.

Below, we present an example of why a partition can be as-

signed an arbitrary sequence of slots. Let us assume a partitioned

system with three partitions (P1, P2 and P3) and the scheduling

plan shown in Fig. 3 (a).

If the temporal requirements of P2 changefor any reason, P2

will be scheduled in the empty slots not used by P1 and P3

(Fig. 3 (b)). These slots do not correspond to any periodic reser-

vation so we can consider that the sequence of slots provided by

SI to PD of P2 are arbitrary. Of course, we can also re-schedule

the entire system but then the scheduling of P1 and P2 would

change, requiring certification of partitions whose requirements do

not change. Such an effort must be avoided if possible.

If we later add a fourth partition to the system (P4) we will

have to schedule P4 in the idle slots not used by P1, P2 and

P3. Again, the slots reserved for P4 can be considered arbitrary

(Fig. 4 (b)).

These two situations show two different scenarios where a par-

tition must be scheduled in time slots that do not follow any

known allocation. Schedulability tests for hierarchical systems are

based on calculating the worst case response time of tasks in the

local level and adding the worst case overhead due to the global

level. This last overhead cannot be calculated if the scheduling pol-

icy in the global level is not known. Thus, the existing literature

does not give a solution to this problem. For this reason, we pro-

vide a solution to analyze the schedulability of a task set of a par-

tition where the scheduling algorithm is arbitrary at global level.

1.1. Contributions and outline

The problem to be addressed is concerned with the schedula-

bility of a hierarchical system composed of two levels. The global

level policy is not known but provided by the SI as a set of arbi-

trary time slots. By arbitrary we understand that the sequence of

Download English Version:

https://daneshyari.com/en/article/6885473

Download Persian Version:

https://daneshyari.com/article/6885473

Daneshyari.com

https://daneshyari.com/en/article/6885473
https://daneshyari.com/article/6885473
https://daneshyari.com

