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a b s t r a c t 

Although the software defect prediction problem has been researched for a long time, the results 

achieved are not so bright. In this paper, we propose to use novel kernels for defect prediction that 

are based on the plagiarized source code, software clones and textual similarity. We generate precom- 

puted kernel matrices and compare their performance on different data sets to model the relationship 

between source code similarity and defectiveness. Each value in a kernel matrix shows how much par- 

allelism exists between the corresponding files of a software system chosen. Our experiments on 10 real 

world datasets indicate that support vector machines (SVM) with a precomputed kernel matrix performs 

better than the SVM with the usual linear kernel in terms of F -measure. Similarly, when used with a pre- 

computed kernel, the k -nearest neighbor classifier (KNN) achieves comparable performance with respect 

to KNN classifier. The results from this preliminary study indicate that source code similarity can be used 

to predict defect proneness. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Many software engineering projects run out of budget and 

schedule. This is one of the biggest problems that the software de- 

velopment industry has met so far and many attempts have been 

made to increase the success rate of the software projects. One 

possible solution is defect prediction, that is, to predict a software 

defect or failure before it is observed and take necessary mitigating 

actions. 

Not all defects have the same priority considering their effects 

in the maintenance phase. For example, a severe bug in an ac- 

counting software can be very critical and may have a high prior- 

ity, whereas a problem in the tool tip text of some screen control 

may not be so important. A software module with one non-critical 

bug is much more preferable to a module with many critical bugs. 

The number of bugs together with their severity are two important 

factors to decide on the extent of defect proneness. 

Deciding on the defectiveness of a software is very critical and 

important to plan the testing and maintenance phases of a soft- 

ware project. First, in testing period, it is possible to focus more 

on the defect prone modules or modules where there are more er- 

rors comparatively. Second, since more defects are fixed during the 

test period, the maintenance cost of the project decreases and this 

causes a decrease in the total cost of the project also. 
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There are numerous studies in the literature about defect pre- 

diction using classification and regression techniques. In the classi- 

fication case, the software modules (classes or files) are marked as 

defective or not, that is, a binary classification problem is solved. 

The focus is on defect proneness rather than its extent. However 

in the regression case, the number of faults in each module is es- 

timated and the emphasis is on the number of faults rather than 

defect proneness. There are studies where either a specific statis- 

tical method is researched or the performance of several statistical 

methods are compared. For example, ( Pickard et al., 1999 ) com- 

pare the efficiency of residual analysis, multivariate regression and 

classification and regression trees (CART) on the software datasets 

which were created by simulation. Giancarlo Succi and Stefanovic 

(2001) compare Poisson regression model with binomial regression 

model to deal with software defect data that is not distributed nor- 

mally. They observe that the zero-inflated negative binomial re- 

gression model shows the best ability to describe the high vari- 

ability in the dependent variable. Schneidewind (2001) shows that 

logistic regression method is not very successful alone. But when 

used together with Boolean discriminant functions (BDF) it gives 

more accurate results. 

In recent years, the amount of research done on defect pre- 

diction using machine learning algorithms has increased slightly 

compared to traditional methods ( Catal and Diri, 2009 ). Many al- 

gorithms have been studied and as a consequence, some of these 

algorithms have been marked to be better than others on the se- 

lected data sets. We believe that, most of the time it is difficult 

to generalize the defect prediction results. According to Myrtveit 
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et al. more reliable research procedures are needed to have con- 

fidence in the comparative studies of software prediction models 

( Myrtveit et al., 2005 ). Furthermore, D’Ambros et al. state that de- 

fect prediction is a field where external validity is very hard to 

achieve ( D’Ambros et al., 2012 ). Menzies et al. show that an ap- 

proach useful in global context is often irrelevant in local con- 

texts in defect prediction studies ( Menzies et al., 2011 ). Rule in- 

duction ( Shepperd and Kadoda, 2001 ), regression ( Shepperd and 

Kadoda, 2001; Ekanayake et al., 2009 ), case-based reasoning (CBR) 

( Khoshgoftaar et al., 1997; 20 0 0; Shepperd and Kadoda, 20 01 ), de- 

cision tree approaches like C4.5 ( Song et al., 2006 ), random forest 

( Kim et al., 2015; Guo et al., 2004; Kaur and Malhotra, 2008 ), lin- 

ear discriminant analysis ( Munson and Khoshgoftaar, 1992 ), artifi- 

cial neural networks ( Khoshgoftaar et al., 1995; Thwin and Quah, 

2002; Kaur et al., 2009; Shepperd and Kadoda, 2001 ), k -nearest 

neighbor ( Boetticher, 2005 ), K -star ( Koru and Liu, 2005 ), Bayesian 

networks ( Fenton et al., 2002; Pai and Dugan, 2007; Zhang, 2000; 

Okutan and Yildiz, 2012 ) and support vector machine based clas- 

sifiers ( Lessmann et al., 2008; Hu et al., 2009; Jin and Liu, 2010; 

Shivaji et al., 2009; Xing et al., 2005; Gondra, 2008 ) are machine 

learning algorithms that are used in the fault prediction literature. 

In our previous work, we proposed a novel kernel to predict 

the number of defects. We showed that support vector machines 

(SVM) with a precomputed kernel matrix performs as good as 

the SVM with linear or RBF kernels, in terms of the root mean 

square error (RMSE). We also have shown that the proposed re- 

gression method is comparable with other regression methods like 

linear regression and KNN ( Okutan and Yildiz, 2013 ). In this pa- 

per, we extend our study and focus on the software defect pre- 

diction as a classification problem and consider the similarities of 

code patterns among different files of a software system to predict 

defectiveness. Although the classification method we suggest can 

be used to predict defectiveness, the novelty of our work is the 

proposition of a new kernel rather than a new defect prediction 

method. To reveal the relationship between the source code sim- 

ilarity and defectiveness, the precomputed kernel matrix is used 

with K -nearest neighbor classifier in addition to SVM. Furthermore, 

to extract similarity between any pair of files and generate kernels, 

clone detection and information retrieval techniques are used. 

This paper is organized as follows: In Section 2 , we give a back- 

ground on kernel machines. In Section 3 , we present a brief review 

of previous work on kernel methods and software defect prediction 

in general. We explain our proposed approach in Section 4 and 

give the experiment results in Section 5 before we conclude in 

Section 6 . 

2. Kernel machines 

2.1. Support vector machines 

Let’s assume that we have a training set 

S = 

{
(x i , y i ) , x i ∈ R 

t , y i ∈ {−1 , 1 } }N 

i =1 
(1) 

where y i ’s are either +1 (positive class) or -1 (negative class) and 

each x i vector (with t entries) belongs to one of these classes. 

Based on this assumption, a hyperplane is defined as 

g(x ) = w 

T x − b (2) 

where w shows the vector normal to the optimal hyperplane and 

b/ ‖ w ‖ is the offset of the hyperplane from the origin on the direc- 

tion of w . 

Support vector machines generate the optimal hyperplane (or 

hypersphere, depending on the kernel) that can be used for clas- 

sification or regression ( Cortes and Vapnik, 1995 ). The optimal hy- 

perplane is found by maximizing the margin which is defined as 

the distance between two nearest instances from either side of the 

Fig. 1. An optimal separating hyperplane ( Alpaydın, 2004 ). 

hyperplane. As it is shown in the Fig. 1 , the hyperplane is 1 
‖ w ‖ 

away from each class and it has a margin of 2 
‖ w ‖ . 

In order to calculate the margin of the optimum hyperplane, 

we need to find the boundaries of the two classes as hyperplanes 

first and then take the distance among these two hyperplanes. The 

boundary hyperplane of the positive class can be written as g(x ) = 

1 whereas the boundary hyperplane of the negative class is g(x ) = 

−1 . 

Assuming that we have a linearly separable data set, the dis- 

tance to the origin is (b + 1) / ‖ w ‖ for the first hyperplane and 

(b − 1) / ‖ w ‖ for the second one. The distance between these two 

hyperplanes is 2 / ‖ w ‖ . The optimum hyperplane separating these 

two classes maximizes this margin or minimizes ‖ w ‖ . 
For positive instances we have 

w 

T x i − b ≥ 1 (3) 

and for negative instances we have 

w 

T x i − b ≤ −1 (4) 

These two constraints can be combined as y i ( w 

T x i − b) ≥ 1 . Now 

our problem becomes an optimization problem of 

Minimize ‖ 

w ‖ 

s. t. y i ( w 

T x i − b) ≥ 1 (5) 

To control the sensitivity of SVM and tolerate possible out- 

liers, slack variables ( ξ i ) are introduced. After adding constant C 

> 0, which determines the relative importance of maximizing the 

margin and minimizing the amount of slack, the problem changes 

slightly and becomes an optimization problem of 

Minimize ‖ 

w ‖ 

+ C 
∑ 

ξi 

s. t. y i ( w 

T x i − b) ≥ 1 − ξi (6) 

In this new representation, we observe that if 0 < ξ i ≤ 1, the 

data point lies between the margin and the correct side of the 

hyper plane. On the other hand if ξ i > 1, then the data point is 

misclassified. Data points that lie on the margin are called sup- 

port vectors and regarded as the most important data points in 

the training set. 

If the data points are not linearly separable, one can use a suit- 

able transformation function to carry the data points to a higher 

dimension where linear separation is possible. The transformation 

is based on the dot product of two vectors as K(x i , x j ) = (x i ) 
T x j . 

Assuming that the transformation function θ is defined as θ : x → 

�( x ), our new dot product in the high dimensional space becomes 

K(x i , x j ) = 

〈
�(x i ) 

T , �(x j ) 
〉
. So, the kernel function can be defined 
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