
The Journal of Systems and Software 119 (2016) 109–121

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A novel kernel to predict software defectiveness

Ahmet Okutan

a , ∗, Olcay Taner Yildiz

b

a Mobipath Erenet Ltd, Maltepe, Istanbul, Turkey
b Department of Computer Engineering, Isik University, Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 18 June 2015

Revised 3 March 2016

Accepted 3 June 2016

Available online 11 June 2016

Keywords:

Defect prediction

SVM

Kernel methods

a b s t r a c t

Although the software defect prediction problem has been researched for a long time, the results

achieved are not so bright. In this paper, we propose to use novel kernels for defect prediction that

are based on the plagiarized source code, software clones and textual similarity. We generate precom-

puted kernel matrices and compare their performance on different data sets to model the relationship

between source code similarity and defectiveness. Each value in a kernel matrix shows how much par-

allelism exists between the corresponding files of a software system chosen. Our experiments on 10 real

world datasets indicate that support vector machines (SVM) with a precomputed kernel matrix performs

better than the SVM with the usual linear kernel in terms of F -measure. Similarly, when used with a pre-

computed kernel, the k -nearest neighbor classifier (KNN) achieves comparable performance with respect

to KNN classifier. The results from this preliminary study indicate that source code similarity can be used

to predict defect proneness.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many software engineering projects run out of budget and

schedule. This is one of the biggest problems that the software de-

velopment industry has met so far and many attempts have been

made to increase the success rate of the software projects. One

possible solution is defect prediction, that is, to predict a software

defect or failure before it is observed and take necessary mitigating

actions.

Not all defects have the same priority considering their effects

in the maintenance phase. For example, a severe bug in an ac-

counting software can be very critical and may have a high prior-

ity, whereas a problem in the tool tip text of some screen control

may not be so important. A software module with one non-critical

bug is much more preferable to a module with many critical bugs.

The number of bugs together with their severity are two important

factors to decide on the extent of defect proneness.

Deciding on the defectiveness of a software is very critical and

important to plan the testing and maintenance phases of a soft-

ware project. First, in testing period, it is possible to focus more

on the defect prone modules or modules where there are more er-

rors comparatively. Second, since more defects are fixed during the

test period, the maintenance cost of the project decreases and this

causes a decrease in the total cost of the project also.

∗ Corresponding author.

E-mail addresses: ahmet.okutan@gmail.com (A. Okutan),

olcaytaner@isikun.edu.tr (O. Taner Yildiz).

There are numerous studies in the literature about defect pre-

diction using classification and regression techniques. In the classi-

fication case, the software modules (classes or files) are marked as

defective or not, that is, a binary classification problem is solved.

The focus is on defect proneness rather than its extent. However

in the regression case, the number of faults in each module is es-

timated and the emphasis is on the number of faults rather than

defect proneness. There are studies where either a specific statis-

tical method is researched or the performance of several statistical

methods are compared. For example, (Pickard et al., 1999) com-

pare the efficiency of residual analysis, multivariate regression and

classification and regression trees (CART) on the software datasets

which were created by simulation. Giancarlo Succi and Stefanovic

(2001) compare Poisson regression model with binomial regression

model to deal with software defect data that is not distributed nor-

mally. They observe that the zero-inflated negative binomial re-

gression model shows the best ability to describe the high vari-

ability in the dependent variable. Schneidewind (2001) shows that

logistic regression method is not very successful alone. But when

used together with Boolean discriminant functions (BDF) it gives

more accurate results.

In recent years, the amount of research done on defect pre-

diction using machine learning algorithms has increased slightly

compared to traditional methods (Catal and Diri, 2009). Many al-

gorithms have been studied and as a consequence, some of these

algorithms have been marked to be better than others on the se-

lected data sets. We believe that, most of the time it is difficult

to generalize the defect prediction results. According to Myrtveit

http://dx.doi.org/10.1016/j.jss.2016.06.006

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.06.006&domain=pdf
mailto:ahmet.okutan@gmail.com
mailto:olcaytaner@isikun.edu.tr
http://dx.doi.org/10.1016/j.jss.2016.06.006

110 A. Okutan, O. Taner Yildiz / The Journal of Systems and Software 119 (2016) 109–121

et al. more reliable research procedures are needed to have con-

fidence in the comparative studies of software prediction models

(Myrtveit et al., 2005). Furthermore, D’Ambros et al. state that de-

fect prediction is a field where external validity is very hard to

achieve (D’Ambros et al., 2012). Menzies et al. show that an ap-

proach useful in global context is often irrelevant in local con-

texts in defect prediction studies (Menzies et al., 2011). Rule in-

duction (Shepperd and Kadoda, 2001), regression (Shepperd and

Kadoda, 2001; Ekanayake et al., 2009), case-based reasoning (CBR)

(Khoshgoftaar et al., 1997; 20 0 0; Shepperd and Kadoda, 20 01), de-

cision tree approaches like C4.5 (Song et al., 2006), random forest

(Kim et al., 2015; Guo et al., 2004; Kaur and Malhotra, 2008), lin-

ear discriminant analysis (Munson and Khoshgoftaar, 1992), artifi-

cial neural networks (Khoshgoftaar et al., 1995; Thwin and Quah,

2002; Kaur et al., 2009; Shepperd and Kadoda, 2001), k -nearest

neighbor (Boetticher, 2005), K -star (Koru and Liu, 2005), Bayesian

networks (Fenton et al., 2002; Pai and Dugan, 2007; Zhang, 2000;

Okutan and Yildiz, 2012) and support vector machine based clas-

sifiers (Lessmann et al., 2008; Hu et al., 2009; Jin and Liu, 2010;

Shivaji et al., 2009; Xing et al., 2005; Gondra, 2008) are machine

learning algorithms that are used in the fault prediction literature.

In our previous work, we proposed a novel kernel to predict

the number of defects. We showed that support vector machines

(SVM) with a precomputed kernel matrix performs as good as

the SVM with linear or RBF kernels, in terms of the root mean

square error (RMSE). We also have shown that the proposed re-

gression method is comparable with other regression methods like

linear regression and KNN (Okutan and Yildiz, 2013). In this pa-

per, we extend our study and focus on the software defect pre-

diction as a classification problem and consider the similarities of

code patterns among different files of a software system to predict

defectiveness. Although the classification method we suggest can

be used to predict defectiveness, the novelty of our work is the

proposition of a new kernel rather than a new defect prediction

method. To reveal the relationship between the source code sim-

ilarity and defectiveness, the precomputed kernel matrix is used

with K -nearest neighbor classifier in addition to SVM. Furthermore,

to extract similarity between any pair of files and generate kernels,

clone detection and information retrieval techniques are used.

This paper is organized as follows: In Section 2 , we give a back-

ground on kernel machines. In Section 3 , we present a brief review

of previous work on kernel methods and software defect prediction

in general. We explain our proposed approach in Section 4 and

give the experiment results in Section 5 before we conclude in

Section 6 .

2. Kernel machines

2.1. Support vector machines

Let’s assume that we have a training set

S =

{
(x i , y i) , x i ∈ R

t , y i ∈ {−1 , 1 } }N

i =1
(1)

where y i ’s are either +1 (positive class) or -1 (negative class) and

each x i vector (with t entries) belongs to one of these classes.

Based on this assumption, a hyperplane is defined as

g(x) = w

T x − b (2)

where w shows the vector normal to the optimal hyperplane and

b/ ‖ w ‖ is the offset of the hyperplane from the origin on the direc-

tion of w .

Support vector machines generate the optimal hyperplane (or

hypersphere, depending on the kernel) that can be used for clas-

sification or regression (Cortes and Vapnik, 1995). The optimal hy-

perplane is found by maximizing the margin which is defined as

the distance between two nearest instances from either side of the

Fig. 1. An optimal separating hyperplane (Alpaydın, 2004).

hyperplane. As it is shown in the Fig. 1 , the hyperplane is 1
‖ w ‖

away from each class and it has a margin of 2
‖ w ‖ .

In order to calculate the margin of the optimum hyperplane,

we need to find the boundaries of the two classes as hyperplanes

first and then take the distance among these two hyperplanes. The

boundary hyperplane of the positive class can be written as g(x) =

1 whereas the boundary hyperplane of the negative class is g(x) =

−1 .

Assuming that we have a linearly separable data set, the dis-

tance to the origin is (b + 1) / ‖ w ‖ for the first hyperplane and

(b − 1) / ‖ w ‖ for the second one. The distance between these two

hyperplanes is 2 / ‖ w ‖ . The optimum hyperplane separating these

two classes maximizes this margin or minimizes ‖ w ‖ .
For positive instances we have

w

T x i − b ≥ 1 (3)

and for negative instances we have

w

T x i − b ≤ −1 (4)

These two constraints can be combined as y i (w

T x i − b) ≥ 1 . Now

our problem becomes an optimization problem of

Minimize ‖

w ‖

s. t. y i (w

T x i − b) ≥ 1 (5)

To control the sensitivity of SVM and tolerate possible out-

liers, slack variables (ξ i) are introduced. After adding constant C

> 0, which determines the relative importance of maximizing the

margin and minimizing the amount of slack, the problem changes

slightly and becomes an optimization problem of

Minimize ‖

w ‖

+ C
∑

ξi

s. t. y i (w

T x i − b) ≥ 1 − ξi (6)

In this new representation, we observe that if 0 < ξ i ≤ 1, the

data point lies between the margin and the correct side of the

hyper plane. On the other hand if ξ i > 1, then the data point is

misclassified. Data points that lie on the margin are called sup-

port vectors and regarded as the most important data points in

the training set.

If the data points are not linearly separable, one can use a suit-

able transformation function to carry the data points to a higher

dimension where linear separation is possible. The transformation

is based on the dot product of two vectors as K(x i , x j) = (x i)
T x j .

Assuming that the transformation function θ is defined as θ : x →

�(x), our new dot product in the high dimensional space becomes

K(x i , x j) =

〈
�(x i)

T , �(x j)
〉
. So, the kernel function can be defined

Download	English	Version:

https://daneshyari.com/en/article/6885475

Download	Persian	Version:

https://daneshyari.com/article/6885475

Daneshyari.com

https://daneshyari.com/en/article/6885475
https://daneshyari.com/article/6885475
https://daneshyari.com/

