
The Journal of Systems and Software 119 (2016) 122–135

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Test case prioritization of build acceptance tests for an enterprise

cloud application: An industrial case study

Hema Srikanth

a , Mikaela Cashman

b , Myra B. Cohen

b , ∗

a IBM, Product Strategy Team, Enterprise Marketing Management, Waltham, MA, USA
b Dept. of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

a r t i c l e i n f o

Article history:

Received 12 April 2015

Revised 2 April 2016

Accepted 8 June 2016

Available online 16 June 2016

Keywords:

Regression testing

Prioritization

Software as a service

Cloud computing

a b s t r a c t

The use of cloud computing brings many new opportunities for companies to deliver software in a

highly-customizable and dynamic way. One such paradigm, Software as a Service (SaaS), allows users

to subscribe and unsubscribe to services as needed. While beneficial to both subscribers and SaaS service

providers, failures escaping to the field in these systems can potentially impact an entire customer base.

Build Acceptance Testing (BAT) is a black box technique performed to validate the quality of a SaaS sys-

tem every time a build is generated. In BAT, the same set of test cases is executed simultaneously across

many different servers, making this a time consuming test process. Since BAT contains the most criti-

cal use cases, it may not be obvious which tests to perform first, given that the time to complete all test

cases across different servers in any given day may be insufficient. While all tests must be eventually run,

it is critical to run those tests first which are likely to find failures. In this work, we ask if it is possible

to prioritize BAT tests for improved time to fault detection and present several different approaches, each

based on the services executed when running each BAT. In an empirical study on a production enterprise

system, we first analyze the historical data from several months in the field, and then use that data to

derive the prioritization order for the current development BATs. We then examine if the orders change

significantly when we consider fault severity using a cost-based prioritization metric. We find that the

prioritization order in which we run the tests does matter, and that the use of historical information is

a good heuristic for this order. Prioritized tests have an increase in the rate of fault detection, with the

average percent of faults detected (APFD) increasing from less than 0.30 to as high as 0.77 on a scale of

zero to one. Although severity slightly changes which order performs best, we see that there are clusters

of orderings, ones which improve time to early fault detection ones which don’t.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In industrial applications software testing is an essential, but

expensive process, and it must be performed each time an applica-

tion is modified (Beizer, 1990). Every change in the build of an ap-

plication leads to the re-execution of the existing black box tests to

validate those changes. With limited resources and time to market

pressures, companies are often unable to complete their testing ef-

forts within the allocated time, which can result in faults escaping

into the field, and customer dissatisfaction. Shorter testing cycles

(Elbaum et al., 2014; Lynch et al., 2013) can magnify this problem.

With the advent of the cloud, many companies are moving into

new computing and software licensing paradigms, some of which

are highly dynamic, and these paradigms have the potential to re-

∗ Corresponding author. Tel.: +14024722305.

E-mail addresses: hema1900@gmail.com (H. Srikanth), mcashman@cse.unl.edu

(M. Cashman), myra@cse.unl.edu (M.B. Cohen).

duce the time between testing even more, creating implications for

software quality.

One such model that is being increasingly used by industry to

provide software is called Software as a Service (or SaaS) (Mietzner

et al., 20 09; Goth, 20 08). In SaaS, companies provide services (ap-

plications) online so that customers can access these services from

anywhere via the web. They can subscribe and unsubscribe to

the services based on their business needs. This type of business

model, is tenant-based ; users come in and rent (or pay) for the ser-

vices as they are needed, and then leave when these no longer ful-

fill a business purpose. While SaaS has many benefits for both the

customer and the provider, quality management has emerged as a

major challenge. The systems must remain available twenty four

hours, seven days a week, and since all customers use a single ver-

sion of the application, the impact of faults which do escape into

the field may be amplified. In a traditional software distribution

model, customers use a range of versions and configurations of an

application, and changes to these occur infrequently. This means

http://dx.doi.org/10.1016/j.jss.2016.06.017

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.06.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.06.017&domain=pdf
mailto:hema1900@gmail.com
mailto:mcashman@cse.unl.edu
mailto:myra@cse.unl.edu
http://dx.doi.org/10.1016/j.jss.2016.06.017

H. Srikanth et al. / The Journal of Systems and Software 119 (2016) 122–135 123

that failures which are observed at one customer’s site may not

be observed at another site, and each build is relatively stable. In

SaaS, however, changes are made often, and the entire customer

base has the potential to exercise any faulty code that slips into

the release.

There has been a large body of work on regression testing dur-

ing software maintenance (Rothermel et al., 1996; Rothermel and

Harrold, 1997; Elbaum et al., 2002), much of which focuses either

on test case selection or test case prioritization, and recently there

has been research on continuous integration testing (Elbaum et al.,

2014) which aims to improve the fast-paced continuous integra-

tion testing of code via prioritization. There have also been some

proposals to model service commonality and variability for SaaS

(Sengupta and Roychoudhury, 2011) which can impact testing. Yet

there is little research that targets the SaaS test process directly,

and little work aimed at its black box testing process in an indus-

trial setting, which includes both integration and system testing.

Lynch et al. (2013) present an overall testing process and tools for

SaaS in an industrial setting, but do not address the specific chal-

lenges of how to select and prioritize test cases. In earlier work, we

examined issues related to reliability in SaaS (Banerjee et al., 2010),

and we analyzed SaaS field failures for the front end of an enter-

prise system that is used by many other SasS applications (Srikanth

and Cohen, 2011). We applied our analysis to generate sequences

of use cases that achieve broad coverage of the sequences of the

application leading to prior field failures. We then prioritized these

sequences. However, we looked at only a small part of a SaaS

system.

In this paper we extend our industrial study to an end-to-

end SaaS application, including the front-end with more than ten

services. These services are bundled into many combinations of

subscriptions, tailored to support the collaboration needs of pre-

mium enterprise customers. For many enterprise companies the

test process comprises first of unit testing by development teams,

and then black box testing which includes build acceptance tests

(the focus of this work), functional tests, system tests, and relia-

bility/stress tests. These are the very basic set of black box testing

steps, all of which must also be executed in parallel in web and

mobile environments. The complexity of testing at the black box

level arises from the combinations of subscriptions and use cases

within each of the subscriptions that need to be validated for each

release.

Every time a new software build is released, the build goes

through a build verification process (called a Build Acceptance Test,

or BAT). The BATs consist of the most critical use cases, those

that exercise mainstream scenarios for all services, and for all

subscription-bundle combinations. Since BATs are black box, they

have no access to code information. Only after the BATs success-

fully complete, do testers run additional feature or system tests.

Lynch et al. (2013) discuss the fact that BATs represent a go no-go

decision for the team. If the BATs pass, then the build testing and

release can move to the next stage. If not, testing will be stopped.

Ideally, BATs need to be validated on many unique servers such

as in a development environment, a staging environment, and fi-

nally within the live environment where the build gets hosted for

all customers to use. In addition, the number of use cases to val-

idate the mainstream functionality grows as the services and fea-

tures grow. The same test teams’ efforts are divided to complete

different tests in different environments, and the successful release

depends on the successful completion of all these test effort s, not

just one. In any given day, a single test team is thus spread thinly,

using their effort s in a distributed manner. This means that BAT

can become a bottleneck, as the time to new versions decreases.

In this paper, we ask if it is possible to prioritize BATs to de-

crease the time to early fault detection. Since we do not have

access to code coverage, we use prioritization heuristics gathered

Licensing

Copyright

Converters

Upload/

Download

Social

Media

Play

Video

Edit

Video

Play

Music

Edit

Music

Fig. 1. Hypothetical Multi-Media SaaS. The services (on right) are all intercon-

nected. The users (on left) choose which services they want to pay for through an

interface. They can add and remove services dynamically.

from historical field failures. Our conjecture is that we can utilize

what we have seen in past SaaS failure reporting systems, to guide

prioritization for the current BATs. We utilize two metrics. First we

examine if the number of services involved in a use case can im-

pact the ability of a test case(s) to find faults. Second, we look at

specific services that were associated with multiple failures in the

past. Since the BAT already has chosen a critical set of use cases

(which are likely based on the same prior information), it seems

to follow that we can utilize this historical information to drive the

new testing. However, until this point in time we do not have em-

pirical evidence to draw this conclusion. Therefore, we perform an

empirical study on a set of real development BATs for a large en-

terprise SaaS application and use a historical window to drive pri-

oritization to validate this idea. We present a process that testers

can follow and conclude with some lessons learned based on our

results.

The contributions of this work are:

1. A process for prioritizing Build Acceptance Tests based on his-

torical field failures;

2. A set of black box prioritization heuristics for SaaS Build Accep-

tance Testing; and

3. An industrial case study on a large enterprise cloud production

application showing the order of tests can significantly impact

the order of finding problems prior to release.

The rest of this paper is structured as follows. In the next

section we present some background and discuss related work.

We follow this with a technical discussion of the prioritization

schemes proposed in Section 3 . We then present our empirical

study (Sections 4 –5). We end with conclusions and future work in

Section 6 .

2. Background and related work

In this section we provide background and related work on the

business model for software as a service. We also describe some

related work on regression testing and prioritization.

2.1. Software as a service model

We present a hypothetical SaaS system to illustrate how cus-

tomers use SaaS. Suppose our company provides a multi-media ap-

plication implemented and delivered as a SaaS (shown in Fig. 1).

In this application, users can upload and share videos and music,

Download English Version:

https://daneshyari.com/en/article/6885476

Download Persian Version:

https://daneshyari.com/article/6885476

Daneshyari.com

https://daneshyari.com/en/article/6885476
https://daneshyari.com/article/6885476
https://daneshyari.com

