
The Journal of Systems and Software 117 (2016) 307–316 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

From benchmarks to real apps: Exploring the energy impacts of 

performance-directed changes 

Cagri Sahin 

∗, Lori Pollock , James Clause 

Computer and Information Sciences Department, University of Delaware, Newark, DE 19716, USA 

a r t i c l e i n f o 

Article history: 

Received 7 November 2015 

Revised 9 February 2016 

Accepted 10 March 2016 

Available online 18 March 2016 

Keywords: 

Android applications 

Performance tips 

Energy efficiency 

a b s t r a c t 

Battery life is an increasing concern for mobile devices. Recent studies have provided initial evidence that 

applying performance tips is an effective mechanism for decreasing energy usage. However, the general- 

izability of such studies to real applications is unclear. We aim to provide deeper insights into whether 

mobile application developers can effectively reduce the energy consumption of their applications by ap- 

plying performance tips. 

We conducted an empirical study to investigate the energy impacts of applying four commonly suggested 

performance tips to eight real Android applications. Considered performance tips are unlikely to impact 

energy usage in a statistically significant manner and, even when the impacts are statistically significant, 

the change in battery life is around 1%. Mobile application developers cannot expect to improve the en- 

ergy usage of their applications as a by product of performance improvements. Tools and techniques that 

specifically target energy usage are necessary for significant improvements. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The types of computing devices used by consumers and en- 

terprises have shifted significantly over the past decade. Whereas 

in 2010, traditional PC sales (desktops and laptops) outnumbered 

other computing platforms, in 2014, roughly 318 million PCs were 

sold compared to 216 million tablets and 1.3 billion smart phones 

( Gartner, 2015 ). With the increased use of mobile devices has come 

increased concerns about the amount of energy that they consume. 

In particular, battery life is critical to mobile devices. Extending a 

device’s battery lifetime is now a priority as excessive battery drain 

is a major contributor to users giving poor reviews or requesting 

refunds ( Apigee, 2012 ). 

Unfortunately, software engineers have a difficult time writing 

energy-efficient software, and they are not as successful as they 

could be, because they do not understand how the decisions they 

make affect the energy usage of their applications. To combat the 

lack of knowledge available to mobile application developers, re- 

searchers have begun to investigate how changes they make to 

their software impact their software’s energy consumption. These 

investigations include empirical studies on the impacts of apply- 

ing code obfuscations ( Sahin et al., 2014b ), performance tips ( Li 

and Halfond, 2014; Mundody and K, 2014; Tonini et al., 2013 ), and 

∗ Corresponding author. Tel.: +1 3028316339. 

E-mail address: cagri@udel.edu (C. Sahin). 

ad blockers ( Rasmussen et al., 2014 ); identifying energy expensive 

APIs ( Linares-Vasquez et al., 2014 ); and investigating how the en- 

ergy usage of applications changes over time ( Hindle, 2012 ). 

Some studies have provided initial evidence that apply- 

ing performance tips—best practices oriented toward runtime 

performance—is an effective mechanism for decreasing energy us- 

age. More specifically, Li and Halfond (2014) , Tonini et al. (2013) , 

and Mundody and K (2014) all report that applying performance 

tips can decrease energy usage from 10% to 67% for Android pro- 

grams. This is promising because such tips are both easy to un- 

derstand and easy to apply. In addition, these results support the 

common wisdom that applications can save energy by “racing to 

sleep”—speeding up computation to allow the CPU to reach a low 

power state faster. These results also show that performance tips 

are related to energy code smells in that energy code smells are 

implementation choices at source code level that cause higher en- 

ergy consumption ( Vetro et al., 2013 ). Consequently, performance 

tips are potentially more likely to be used in practice. However, 

these studies are limited in scope in several ways. The most se- 

vere of these limitations is that none of the existing studies evalu- 

ated the impacts of the performance tips when applied to real ap- 

plications. Rather, they applied the performance tips to kernels or 

micro-benchmarks—small pieces of code that focus on the specific 

issue under study. While the targeted nature of kernels is benefi- 

cial, it remains unclear whether the observed results will transfer 

to real applications, which are characteristically larger and more 

complex. 

http://dx.doi.org/10.1016/j.jss.2016.03.031 

0164-1212/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.jss.2016.03.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.03.031&domain=pdf
mailto:cagri@udel.edu
http://dx.doi.org/10.1016/j.jss.2016.03.031


308 C. Sahin et al. / The Journal of Systems and Software 117 (2016) 307–316 

To better understand the energy impacts of performance tips 

on Android applications, we have conducted an empirical study in- 

vestigating the energy impacts of applying four commonly recom- 

mended performance tips to real Android applications. This study 

provides deeper insight into whether Android application develop- 

ers can effectively reduce the energy consumption of their applica- 

tions by applying performance tips. At a high-level, the study is fo- 

cused on addressing two major questions: (1) How do performance 

tips alter the overall energy consumption of Android applications?, 

and (2) Are the energy impacts of performance tips likely to be 

meaningful for Android application users? 

To answer our research questions, we created a total of 32 mod- 

ified versions of eight Android applications by applying the four 

considered performance tips. We executed both the modified and 

base versions of the applications multiple times on two different 

platforms with one or more user scenarios. As the versions were 

executing, we recorded the total amount of energy that was con- 

sumed. In total, we ran 5100 executions, 2550 per platform, and 

collected over 3GB of experimental data. We then performed a sta- 

tistical analysis of the collected data to investigate the impacts of 

the performance tips on energy usage and to answer our research 

questions. 

The results of our study show that: 

(1) Despite initial evidence to the contrary, the performance tips 

that we investigated are unlikely to impact the energy us- 

age of Android applications; only 2% of the 136 cases in our 

study indicated a statistically significant difference in energy 

consumption. 

(2) Even in the unlikely event that a performance tip impacts 

energy usage in a statistically significant manner, the impact 

of change on battery life is negligible; the largest percentage 

change in battery life that we observed was approximately 

≈1%. 

The remainder of this paper is organized as follows: 

Section 2 describes the methodology of our study including 

our subjects and experimental procedure. Section 3 presents and 

discusses the results of the study including potential threats to its 

validity. Finally, Sections 5 and 6 discuss related work and present 

our conclusions and future work. 

2. Empirical study 

This section describes the details of our study design, including 

our independent and dependent variables; considered applications, 

scenarios, and performance tips; measurement platforms; and data 

collection protocol. In planning this work, we followed a method- 

ology that is nearly identical to the one used in our prior work 

on investigating the impacts of code obfuscation on energy usage 

( Sahin et al., 2014b ). To design this methodology, we followed well- 

known guidelines for empirical study design ( Arcuri and Briand, 

2011 ) and our experience from conducting similar studies ( Sahin 

et al., 2012; Manotas et al., 2013; Sahin et al., 2014a ). All of our 

experimental applications, artifacts, and summary data are pub- 

licly available: https://bitbucket.org/udse/perf _ tips-study . Our raw 

experimental data is too large to host publicly, but is available 

upon request. 

2.1. Experimental variables 

In this study, we considered one dependent variable, the 

amount of energy consumed by an execution, and two indepen- 

dent variables: (1) the performance tip applied to the application, 

and (2) the platform where the application executes. 

To isolate the impacts of changing our independent variables 

on our dependent variable, it is necessary to precisely control how 

Table 1 

Considered applications. 

Application Description LoC 

Calculator Android calculator 1427 

Clock Android clock 13477 

DailyMoney Daily financial tracker 8723 

Nim Strategy game 1475 

OIFileManager File manager 7200 

OpenSudoku Sudoku game 6079 

SkyMap Astronomy application 10921 

Tomdroid Note taking application 7955 

the applications are executed. In general, mobile applications are 

interactive and event-driven. They accept input, either from a user 

or from a sensor, perform some computation, and generate a re- 

sponse. In our experiments, this interactive nature can introduce 

a potential source of bias as it is difficult to manually reproduce 

a given execution exactly. For example, a user can often repeat- 

edly perform the same sequence of actions (e.g., enter text into a 

textbox or click a button) but cannot maintain the same timing 

between the actions. Although such differences may seem incon- 

sequential, they may lead to observed differences in energy con- 

sumption that are not due to changing our independent variable, 

but rather to differences in how the application is driven. To pre- 

vent such bias, it is necessary to be able to reproduce deterministi- 

cally a given sequence of actions with great fidelity. Capture/replay 

tools provide this functionality. 

Capture/replay tools are designed to allow for the deterministic 

replay of a sequence of recorded events. Conceptually, this is ac- 

complished by wrapping an application to insulate it from its en- 

vironment. When capturing interactions, the wrapper records all 

of the events that are passed to the application from the environ- 

ment. During replay, the wrapper replaces the environment and 

passes the recorded events to the application. Because precise tim- 

ing information is recorded during the capture process, there is 

very little variability in when events are passed to the applica- 

tion during replay. Hence, when using a capture/replay tool, any 

observed variations in energy usage are more likely to be the result 

of the performance tips applied rather than inconsistencies in driv- 

ing the application. We chose to use RERAN ( Gomez et al., 2013 ) as 

our capture/replay tool, because it is designed to record and replay 

Android applications. 

2.2. Considered applications 

For our study, we used popular, easily accessible Android appli- 

cations as our subjects. We selected Android applications for sev- 

eral reasons. First, as is the case for most software engineers, An- 

droid developers often care about the performance of their appli- 

cations. As such, there are numerous performance tips that have 

been suggested for Android applications. Second, as mentioned 

previously, Android application developers typically care about the 

energy efficiency of their applications. Third, the source code of 

many Android applications is freely available, allowing us to eas- 

ily modify the applications to apply the performance tips. Finally, 

we have extensive infrastructure to run Android applications and 

measure their energy usage. 

Table 1 lists the specific applications that we used in this study. 

The first two columns, Application and Description , list the name of 

each application and a brief description of its functionality, respec- 

tively and the final column, LoC , shows the application’s number of 

lines of code. 

We chose these specific applications for several reasons. First, 

they are representative of a wide variety of common application 

types (e.g., games, study aids, productivity tools). Second, they are 

https://bitbucket.org/udse/perf_tips-study


Download English Version:

https://daneshyari.com/en/article/6885508

Download Persian Version:

https://daneshyari.com/article/6885508

Daneshyari.com

https://daneshyari.com/en/article/6885508
https://daneshyari.com/article/6885508
https://daneshyari.com

