
The Journal of Systems and Software 117 (2016) 317–333

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An approach to modeling and developing teleo-reactive systems

considering timing constraints

Pedro Sánchez

∗, Bárbara Álvarez , José Miguel Morales , Diego Alonso , Andrés Iborra

Systems and Electronic Engineering Division (DSIE), Universidad Politécnica de Cartagena Campus Muralla del Mar s/n, Cartagena, Spain

a r t i c l e i n f o

Article history:

Received 2 November 2015

Revised 21 March 2016

Accepted 24 March 2016

Available online 2 April 2016

Keywords:

Teleo-reactive

Timing constraints

TRiStar

Requirements engineering

a b s t r a c t

Context: TeleoR is an extension and implementation of teleo-reactive (TR) language for defining the be-

havior of reactive systems when the consideration of timing constraints is a matter of interest.

Objective: This paper analyzes how to consider real-time constraints when a TR approach is followed

from modeling to implementation.

Method: After carrying out a study of the type of timing constraints from the TR perspective, the pos-

sibility of using TeleoR for incorporating such constraints was considered. Some extensions on TRiStar

notation were then made to represent temporal requirements. A drone-based case study was carried out

to demonstrate the usefulness of this approach. Finally, a survey was conducted to validate the approach.

Results: TeleoR can, to a great extent, support the kind of real-time constraints required for developing

real-time systems, offering a direct solution to five of the eight temporal requirements identified, which

can be implemented using the basic features of the language.

Conclusions: Considering real-time requirements should be part of the specification of reactive systems

implemented when using the TR approach and should be supported by the implementation platform.

In this regard, TeleoR offers reasonable possibilities that should be extended by taking into account the

limitations identified here.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reactive systems are real-time systems that interact with the

physical world and react to stimuli from the environment within

finite and specified time intervals. The teleo-reactive paradigm

(henceforth TR) designed by Prof. Nils Nilsson (Nilsson, 1994, Nils-

son, 2001) provides a programming model based on high-level

agents to develop reactive systems. This model is particularly fo-

cused on the robotic vehicle domain. The TR approach offers engi-

neers a goal-oriented formalism for the development of reactive

systems, allowing them to define system behavior while taking

into account goals and changes in the state of the environment.

This approach has been expanded with new capabilities by nu-

merous authors in order to model systems in different domains.

In Morales et al. (2014) the authors present a systematic literature

review of the TR paradigm in which high-quality research related

to its use is identified.

∗ Corresponding author. Tel.: + 34 96 8326460.

E-mail addresses: pedro.sanchez@upct.es (P. Sánchez), balvarez@upct.es (B. Ál-

varez), josemiguel.morales@upct.es (J.M. Morales), diego.alonso@upct.es (D. Alonso),

andres.iborra@upct.es (A. Iborra).

In Nilsson (1994) Nilsson introduces the notion of the TR pro-

gram, consisting of an ordered set of production rules, as an agent

control sequence that directs agents toward goals while taking into

account changes in the environment. This list of rules is continu-

ously scanned from the first rule whose condition is satisfied, lead-

ing to the execution of the corresponding action. In other words, a

TR program, as a reactive system, is a set of rules that continuously

observes the environment and takes decisions based on these ob-

servations. The state of this environment is dynamic and can be

changed when actions are triggered. The main advantage of this

approach is its robustness, due to the continuous computation of

the conditions on which agent actions are based. In short, the TR

paradigm offers a useful approach for developing systems when a

goal-oriented specification is employed (see (Rajan et al., 2010, Gu-

bisch et al., 2008, Broda et al., 20 0 0) for further details of this ap-

proach).

The original approach defined by Nilsson does not allow the

consideration of timing requirements. When the TR approach is

used to develop a reactive system, the question arises: how can we

incorporate timing requirements into the system? The timing require-

ments, which are part of the system specification, will imply a de-

terministic behavior during their execution. The different threads

will have to meet their deadlines, specified by time intervals.

http://dx.doi.org/10.1016/j.jss.2016.03.064

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.03.064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.03.064&domain=pdf
mailto:pedro.sanchez@upct.es
mailto:balvarez@upct.es
mailto:josemiguel.morales@upct.es
mailto:diego.alonso@upct.es
mailto:andres.iborra@upct.es
http://dx.doi.org/10.1016/j.jss.2016.03.064

318 P. Sánchez et al. / The Journal of Systems and Software 117 (2016) 317–333

This paper contributes to the state of the art by providing: (1) a

detailed study of types of timing constraints and their formal rep-

resentation considered when specifying reactive systems using the

TR paradigm; (2) a study on how TeleoR (the most well-known

TR programming language) allows the considered types of require-

ments to be incorporated and a solution for those requirements

which do not have a direct representation in the language; (3) a

goal-oriented graphical notation (called TRiStar +) to capture tim-

ing requirements; (4) a preliminary method for developing reactive

systems with timing constraints; and (5) validation by a complex

example and a satisfaction survey on the usability of the notation.

The paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 summarizes the original TR approach as de-

fined by Nilsson. Section 4 summarizes the main contributions of

TeleoR, an extension of the approach proposed by Clark. In Section

5 , the correspondence between timing requirements and TR re-

quirements is pointed out. In Section 6 , the ability of TeleoR to

incorporate the above requirements is described. In Section 7 , the

TRiStar + notation for specifying timing requirements is given. In

order to validate the proposal, a practical example is described in

Section 8 . Section 9 discusses the results obtained in the evaluation

of TRiStar + notation and finally our conclusions are presented.

2. Related and previous work

As stated before, the TR approach as defined by Nilsson does

not allow the consideration of timing requirements. Among the dif-

ferent extensions of the TR approach, Prof. Keith Clark has made an

important proposal, TeleoR (Clark and Robinson, 2014), which pro-

vides a real implementation of the system that can be compiled

and executed on different platforms. In addition, this initiative ex-

tends the initial approach with first-level syntactic constructors to

consider timing requirements. In this paper we will therefore con-

sider only such an implementation. Although TeleoR allows reac-

tive systems specifications to be compiled, a detailed study of how

the TR paradigm allows timing requirements to be modeled has

not been published to date.

There are many other approaches for designing agent-based

systems similar to the teleo-reactive approach, amongst which it

is worth highlighting the Belief-Desire-Intention (BDI) (Rao and

Georgeff, 1995) approach. In the BDI architecture, an agent carries

out intentions according to its current belief in order to achieve its

desires. Intentions are revised every time beliefs or desires change

as a consequence of changes in the environment. BDI Desires are

considered distinct from goals, as at any given moment there exists

the possibility of mutually incompatible desires. Though both the

BDI and teleo-reactive approaches develop the same kind of appli-

cations, they can nevertheless be combined to overcome their limi-

tations when used in isolation. In this vein, the work by Coffey and

Clark (2006) proposes a BDI-style cognitive layer with a graded be-

havioral layer composed of hierarchies of teleo-reactive programs,

so that the reactive behavior of a BDI system can be achieved with

teleo-reactive programs.

There are some other alternatives to specifying the behavior

of agent-based systems. TROPOS (Castro et al., 2002, Bresciani et

al., 2004) is an agent-oriented software engineering methodology

that covers the whole software development process and has been

used to model and simulate Embedded Real-time Control Sys-

tems (Darragi et al., 2013, January). TROPOS adopts the i ∗ model-

ing framework (Yu, 1997) and has the same limitations in specify-

ing TR systems as those found in i ∗ (see (Mouratidis and Giorgini,

2007) for a comprehensive description of these limitations). TRO-

POS addresses these problems by using UML diagrams which allow

developers to continue the development process. In this context,

to facilitate the specification of reactive systems and the exchange

of specifications among different developers, the authors proposed

an i ∗ extension called TRiStar (Morales et al., 2015), a goal-oriented

modeling language suitable for early phases of system modeling in

order to understand the problem domain). TRiStar makes it pos-

sible to represent graphically a platform-independent TR specifica-

tion by focusing on goals, conditions, actions, etc. The TRiStar + ap-

proach introduced in this article constitutes a further step in this

direction as it allows the behavior of TR systems to be specified

considering timing constraints. For understanding the contribution

of the article an introduction to the TR approach is first needed.

3. The teleo-reactive paradigm

This section is devoted to introducing the TR paradigm. Fur-

ther information on the paradigm can be found in the literature

(Morales et al., 2014). A TR sequence is an agent control program

that directs the agent towards a goal (hence teleo) taking into ac-

count changes in the state of the environment (hence reactive)

(Nilsson, 1994). Teleo means to bring to an end or to achieve a

goal. Reactive implies continuous sensing of the environment, i.e.

the effects of task actions or changes brought about by external

events via sensorial data and communication with other agents .

This monitoring allows quick reactions to new information so as

to change or modify a task action, or to interrupt a sub-task. TR

programs can be seen as a set of prioritized condition/action rules

that trigger actions whose continuous execution leads the system

to satisfy a goal. Table 1 shows the TR program structure consist-

ing of an ordered set of rules. For each rule, K i are the conditions

either in sensory inputs or in a model of the environment and a i
are the actions that can change the model.

The list of rules is continuously evaluated, starting from the top

and when a rule condition is true its corresponding action is ex-

ecuted, so that the system can interact with its environment. Ac-

tions can be either durative or discrete actions. A durative action

is one that continues indefinitely while its condition is true. For

example, in the robotic vehicle domain, a mobile robot is capable

of executing the durative action “move forward”, which makes the

robot move forward indefinitely. A discrete action is one that fin-

ishes after a short period of time and cannot be interrupted, e.g.

“open gripper”.

Table 2 shows the TR program of a robot that moves forward

until it detects an obstacle (sensor input), and then “rotates” until

its path is clear. Rule #1 has higher priority than rule #2, so when

an obstacle is detected the durative action “move forward” is inter-

rupted. Once the condition of the rule #1 becomes false, because

the obstacle is no longer in front of the robot, rule#2 continues the

“move forward” action.

An interesting capability in defining a TR program is the possi-

bility of including hierarchies to improve many properties such as

modularity, reuse or tests. In a hierarchical TR program, each ac-

tion (for example, “search object”) can also be another TR program

Table 1

TR program structure.

Priority Rule (condition → action)

The highest priority K 1 → a 1
K 2 → a 2
…

The lowest priority K m → a n

Table 2

A simple TR program for a moving robot.

Id Rule (condition → action)

rule #1: Obstacle_detected → rotate

rule #2: True → move forward

Download English Version:

https://daneshyari.com/en/article/6885509

Download Persian Version:

https://daneshyari.com/article/6885509

Daneshyari.com

https://daneshyari.com/en/article/6885509
https://daneshyari.com/article/6885509
https://daneshyari.com

