
The Journal of Systems and Software 117 (2016) 612–637

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automated design of multi-layered web information systems

Fábio Paulo Basso

a , ∗, Raquel Mainardi Pillat a , Toacy Cavalcante Oliveira

a ,
Fabricia Roos-Frantz

b , Rafael Z. Frantz

b

a Systems Engineering and Computer Science Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Department of Exact Sciences and Engineering, UNIJUÍ University, Ijuí, RS, Brazil

a r t i c l e i n f o

Article history:

Received 17 February 2015

Revised 10 March 2016

Accepted 25 April 2016

Available online 27 April 2016

Keywords:

Model-driven web engineering

Rapid application prototype

Domain-specific language

Prototyping

Automated design

Mockup

Experience report

a b s t r a c t

In the development of web information systems, design tasks are commonly used in approaches for

Model-Driven Web Engineering (MDWE) to represent models. To generate fully implemented prototypes,

these models require a rich representation of the semantics for actions (e.g., database persistence oper-

ations). In the development of some use case scenarios for the multi-layered development of web in-

formation systems, these design tasks may consume weeks of work even for experienced designers. The

literature pointed out that the impossibility for executing a software project with short iterations ham-

pers the adoption of some approaches for design in some contexts, such as start-up companies. A possible

solution to introduce design tasks in short iterations is the use of automated design techniques, which

assist the production of models by means of transformation tasks and refinements. This paper details

our methodology for MDWE, which is supported by automated design techniques strictly associated with

use case patterns of type CRUD. The novelty relies on iterations that are possible for execution with short

time-scales. This is a benefit from automated design techniques not observed in MDWE approaches based

on manual design tasks. We also report on previous experiences and address open questions relevant for

the theory and practice of MDWE.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Model-Driven Engineering (MDE) (Kent, 2002) is a paradigm for

model-based software development implemented by several tech-

niques and used in several industrial contexts. In typical MDE-

based processes, model transformations should receive a highly de-

tailed model to generate working pieces of applications (Schmidt,

2006). To generate full source code, several parts of an application

design are detailed in Domain-Specific Languages (DSLs) (Voelter,

2009) and/or decorated with annotations added to model elements

represented with the Unified Modeling Language (UML) (Booch

et al., 2005), a general-purpose modeling language commonly

used. In any case, this makes the software construction dependent

of design tasks.

In the development of web information systems, web front

ends such as layout composed of Graphic User Interface (GUI)

components (Vanderdonckt, 2005) and behavioral diagrams

∗ Corresponding author.

E-mail addresses: fabiopbasso@cos.ufrj.br , fabiopbasso@gmail.com (F.P. Basso),

rmpillat@cos.ufrj.br (R.M. Pillat), toacy@cos.ufrj.br (T.C. Oliveira),

frfrantz@unijui.edu.br (F. Roos-Frantz), rzfrantz@unijui.edu.br (R.Z. Frantz).

(Nunes and Schwabe, 2006) are usually represented. To allow the

generation of full source code with an approach for Model-Driven

Web Engineering (MDWE) (Rossi, 2013), these models are manually

decorated with semantics for the actions of users, screen flows and

business logic. It is possible to abstract implementation details us-

ing a design language, focusing on the specification of semantics

in models that formalize the knowledge about software require-

ments (France and Bieman, 2001). Before the source code gener-

ation, these models can be further refined by designers, enabling

clients to experiment an executable prototype in the end. This ap-

proach is known as multi-view (France and Bieman, 2001), and the

model is created and enriched taking as input high-level abstrac-

tions of other models that map implementation details through

model transformations.

The execution of a multi-view approach for MDWE may use de-

sign tasks that require months of work (Kulkarni et al., 2011; Zhang

and Patel, 2011). Depending on the size of the software project and

the adopted schedule in software process iterations, the effort in-

vested in detailing models is seen as a reason to avoid the adoption

of some of MDWE approaches (Whittle et al., 2013). Therefore, the

ability to execute these tasks in short time-scales is a desirable fea-

ture in some contexts, such as in start-up companies (Rivero et al.,

2014; Giardino et al., 2014).

http://dx.doi.org/10.1016/j.jss.2016.04.060

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.04.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.060&domain=pdf
mailto:fabiopbasso@cos.ufrj.br
mailto:fabiopbasso@gmail.com
mailto:rmpillat@cos.ufrj.br
mailto:toacy@cos.ufrj.br
mailto:frfrantz@unijui.edu.br
mailto:rzfrantz@unijui.edu.br
http://dx.doi.org/10.1016/j.jss.2016.04.060

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 613

A possible solution to speed-up the modelling phase, thus help-

ing in the execution of iterations in short time-scales, is the use

of techniques for automated design (Linington, 2005; Batory et al.,

2013). In this paper, we suggest the use of three different phases

for constructing models for MDWE, namely: evolutionary, archi-

tectural, and functional. Models are based on the Model-View-

Controller (MVC) architectural pattern (Evans, 2004). Although

each prototyping phase is handled by some DSL and tools found

in the literature, their integrated use is still a challenge in MDWE.

We present a methodology for MDWE named MockupToME

Method, which includes tasks supported by (semi-)automated de-

sign techniques for some use case patterns (Molina et al., 2002).

We extend previous contributions (Basso et al., 2014b), by detail-

ing tasks and artefacts that include many DSLs, developed to sup-

port the design of many layers of MVC-based application models,

and the tools associated with these tasks for automated design. We

also summarized data collected from two software projects, the

first considering mostly manual design tasks and the second con-

sidering the use of tasks based on automated design techniques.

A partially assisted design through Wizards was used in the

first software project, with iterations planned for one month or

more. In the second project, we used MockupToME Method with

iterations planned and executed with one to two weeks. Both ap-

proaches are based on use case patterns of type CRUD (Souza et al.,

2007), and use the same DSLs for representation of MVC-based

application models, which are used in the end of a lifecycle for

model transformations by the same source code generators. Differ-

ently, MockupToME Method includes DSLs and tools for designers

to work in high-level of abstraction than in MVC-based application

models.

The use of short iterations is a benefit observed in MockupToME

Method, but not in our previous approach, i.e., in manual design

of these models. The reasons why short time-scales are feasible in

MockupToME Method has to do with the automated design tech-

niques discussed in this paper. Thus, we also derived interesting

research questions as a result from these two software projects.

The rest of the paper is organized as follows: Section 2 ,

conceptualizes this work and Section 3 motivates this research;

Section 4 exemplifies the representation of preliminary require-

ments, which are the input for the automated design approach

introduced in Section 5; Section 6 , describes the methodology,

which is complemented in Section 7 with implementation de-

tails and in Section 8 with activities performed after the source

code generation; Section 9 , summarizes the two software projects,

with lessons and insights for future research; Section 10 , points

out limitations; Section 11 presents the related work; and, finally,

Section 12 , reports on our main conclusions and possible future

work.

2. Concepts

In the context of the development of web information systems,

the following concepts are important for the understanding of this

paper (Evans, 2004; Souza et al., 2007; Allier et al., 2015):

• Model-View-Controller (MVC). Is an architectural pat-

tern (Parnas, 1994) frequently used in the construction of

web information systems (Burke and Monson-Haefel, 2006).

This pattern is important to modularize and structure the

source code in three layers, thus facilitating the mainte-

nance (Bosch, 2013) and avoiding the erosion of architectures

as they evolves over time.
• Conceptual model. A class diagram composed of analysis

classes, also named entities, which represents the Model layer

of the MVC (Evans, 2004).

• GUI Templates. Facilitate the development of standardized

structures for GUI (Han and Liu, 2010) allowing developers to

focus on the logic layer, while layout details and actions are

managed by a template engine. By means of templates, de-

velopers focus on the content that is placed inside a template

structure.
• CRUD. A type of GUI template and an acronym for create, read,

update, and delete (Souza et al., 2007) characterizing frequent

set of use cases developed in information systems that allow to

persist, retrieve and remove objects to/from a database. Differ-

ent structures for CRUD can be used, and may include a specific

GUI template.
• Domain-Driven Design (DDD). The Model layer is used to

represent all the other application layers using a DDD ap-

proach (Evans, 2004). In MDWE, DDD drives the generation of

a detailed MVC-based model, guiding the refinement of multi-

ple layers associated with a particular use case scenario and a

paper prototype.
• Master/Detail. A well-known concept among software develop-

ers, which allows the classification of use cases for use case pat-

terns (Molina et al., 2002). These concepts of Master and Detail

are well discussed in approaches for DDD (Evans, 2004) and the

object oriented method (Molina et al., 2002).

The following concepts are important to contextualize our

work:

• Use case scenario. Is one of possible flows from a use

case (Sommerville, 2010) or user story (Landre et al., 2007). Use

case scenarios are important both for design and for tests with

clients (Sommerville, 2010), which evaluate models, prototypes

and also the final version of an application piece with accep-

tance tests.
• Paper prototype. A hand drawing on a paper showing user in-

terfaces with user interactions that represents use case scenar-

ios (Sommerville, 2010). It is a software artefact represented in

a high-level of abstraction than a mockup. A paper prototype

is not a model, but a document usually associated with user

stories specified in initial brainstorming meetings for the re-

quirements elicitation. It is also called as pre-prototype (Davis

and Venkatesh, 2004) and, sometimes, as throwaway proto-

type (Sommerville, 2010).
• Mockup. A model for a GUI, which is not possible to be

fully implemented in functional prototypes (Blankenhorn, 2004;

Rivero et al., 2014; Forward et al., 2012). In our understand-

ing, mockups are abstractions in a high-level than the business

logic needed in the development of web information systems,

focusing on GUI components specification. Mockups may also

be called sketches (Balsamic Mockups Company, 2015).
• Round-trip engineering. A set of activities aiming at syn-

chronize generated source code with manually developed

code (Mussbacher et al., 2014). It is performed automatically

with the support of tools or, sometimes, manually, when it is

required to update the model based on changes from source

code.
• Full source code generation. Is the ability to generate 100%

of what is designed, not 100% of all the application (Kelly

and Tolvanen, 2008). Kelly and Tolvanen (2008) claim that full

source code generation is a possible solution that mitigates the

execution of changes in generated artefacts.

The Java platform is important for the implementation of web

information systems and is divided in J2EE, J2SE, and J2ME edi-

tions. Burke and Monson-Haefel (2006) state that:

1. For the development of forms to desktop platforms, developers

adopt J2SE and APIs such as AWT and Java Swing.

Download English Version:

https://daneshyari.com/en/article/6885524

Download Persian Version:

https://daneshyari.com/article/6885524

Daneshyari.com

https://daneshyari.com/en/article/6885524
https://daneshyari.com/article/6885524
https://daneshyari.com

