
The Journal of Systems and Software 111 (2016) 89–104

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On the design of a maintainable software development kit to implement

integration solutions

Rafael Z. Frantz a,∗, Rafael Corchuelo b, Fabricia Roos-Frantz a

a Department of Exact Sciences and Engineering, Unijuí University, Rua do Comércio, 3000, Ijuí 98700-000, RS, Brazil
b ETSI Informática, University of Seville, Avda. Reina Mercedes, s/n, Sevilla 41012, Spain

a r t i c l e i n f o

Article history:

Received 5 July 2013

Revised 14 July 2015

Accepted 25 August 2015

Available online 16 September 2015

Keywords:

Enterprise Application Integration

Integration framework

a b s t r a c t

Companies typically rely on applications purchased from third parties or developed at home to support their

business activities. It is not uncommon that these applications were not designed taking integration into

account. Enterprise Application Integration provides methodologies and tools to design and implement in-

tegration solutions. Camel, Spring Integration, and Mule range amongst the most popular open-source tools

that provide support to implement integration solutions. The adaptive maintenance of a software tool is very

important for companies that need to reuse existing tools to build their own. We have analysed 25 maintain-

ability measures on Camel, Spring Integration, and Mule. We have conducted a statistical analysis to confirm

the results obtained with the maintainability measures, and it follows that these tools may have problems re-

garding maintenance. These problems increase the costs of the adaptation process. This motivated us to work

on a new proposal that has been carefully designed in order to reduce maintainability efforts. Guaraná SDK is

the software tool that we provide to implement integration solutions. We have also computed the maintain-

ability measures regarding Guaraná SDK and the results suggest that maintaining it is easier than maintaining

the others. Furthermore, we have conducted an industrial experience to demonstrate the application of our

proposal in industry.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Companies rely on applications to support their business activ-

ities. Frequently, these applications are legacy systems, packages

purchased from third parties, or developed at home to solve a

particular problem. This usually results in heterogeneous software

ecosystems, which are composed of applications that were not

usually designed taking integration into account. Integration is nec-

essary, chiefly because it allows to reuse two or more applications to

support new business processes, or because the current business

processes have to be optimised by interacting with other applications

within the software ecosystem. Enterprise Application Integration

provides methodologies and tools to design and implement inte-

gration solutions. The goal of an Enterprise Application Integration

solution is to keep a number of applications’ data in synchrony or to

develop new functionality on top of them, so that applications do not

have to be changed and are not disturbed by the integration solution

(Hohpe and Woolf, 2003).

∗ Corresponding author. Tel.: +55 5533320200.

E-mail addresses: rzfrantz@unijui.edu.br (R.Z. Frantz), corchu@us.es (R. Corchuelo),

frfrantz@unijui.edu.br (F. Roos-Frantz).

In the last years, several tools have emerged to support the de-

sign and implementation of integration solutions. Hohpe and Woolf

(2003) documented many patterns found in the development of inte-

gration solutions. These patterns basically aim to support three core

concepts, namely: pipes, filters, and resource adapters. Camel, Spring

Integration, and Mule range amongst the most popular open-source

tools that provide support for some of these integration patterns.

Camel provides a fluent API (Fowler, 2010) that software engineers

can use programmatically or by means of a graphical editor. In both

cases, the integration solution is implemented using a Java, Scala, or

XML Spring-based configuration files. Spring Integration was built on

top of the Spring Framework container, and provides a command-

query API (Fowler, 2010). This tool can be used programmatically

or by means of a graphical editor. Integration solutions are imple-

mented using either Java code or an XML Spring-based configuration

file. The architecture of Mule got inspiration from the concept of en-

terprise service bus. Software engineers count on a command-query

API (Fowler, 2010) to use this tool programmatically, or a workbench

to design and implement integration solutions using a graphical ed-

itor. Integration solutions are implemented using either Java code or

an XML Spring-based configuration file. In earlier versions, Mule sup-

ported a limited range of integration patterns; version 3.0 resulted in

a complete re-design whose focus was on supporting the majority

http://dx.doi.org/10.1016/j.jss.2015.08.044

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.08.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.044&domain=pdf
mailto:rzfrantz@unijui.edu.br
mailto:corchu@us.es
mailto:frfrantz@unijui.edu.br
http://dx.doi.org/10.1016/j.jss.2015.08.044


90 R.Z. Frantz et al. / The Journal of Systems and Software 111 (2016) 89–104

Fig. 1. Packages of which our framework is composed.

of integration patterns. As of the time of writing this article, Camel,

Spring Integration, and Mule are at version 2.7.1, 2.0.3, and 3.1, respec-

tively. In the rest of the article, we implicitly refer to these versions.

We are concerned with maintainability. According to IEEE (1990),

maintenance can be classified as corrective, perfective, and adaptive.

Corrective maintenance aims to repair software systems to eliminate

faults that might cause them to deviate from their normal process-

ing. Perfective maintenance aims to modify a software system, usu-

ally to improve the performance of current functionalities or even to

improve the maintainability of the overall software system. Adaptive

maintenance focuses on adapting a software system to use it in new

execution environments or business processes.

In this article, we are interested in adaptive maintenance, which

is very important for companies that need to reuse existing tools to

build their own (Chen and Huang, 2009). Many companies rely on

open-source tools that can be adapted to a specific context within

their business domain. For example, a company that develops En-

terprise Application Integration solutions may need tools that focus

on specific contexts such as e-commerce, health systems, financial

systems, and insurance systems to meet standards and recommen-

dations like RosettaNet (2011), HL7 (2011), Swift (2011), and HIPAA

(2011), respectively. Other authors have evaluated open-source tools

from a performance point of view (García-Jiménez et al., 2010); we

think that our work is complementary.

It is not new that the design and implementation of a software

system has an impact on its maintenance costs (Epping and Lott,

1994; Jorgensen, 1995; Bergin and Keating, 2003; Schneidewind,

1987). International standards such as ISO 9126-1 (ISO/IEC, 2001)

or more recent ISO 25010 (ISO/IEC, 2011) define quality models that

help to understand what may have an impact on the maintainability

of software systems. According to these standards, the maintainabil-

ity of a software system can be influenced by the amount of effort

to change the system (Changeability), the capability of a software

to avoid collateral effects produced by changes on it (Stability), the

ability to identify and diagnose failures (Analysability), and the effort

to verify the software after changes (Testability). In both design and

implementation, software engineers need to pay attention to read-

ability, understandability, and complexity, since they are related to

several subcharacteristics that characterise maintainability. Thus, the

resulting models and source code must be easy to read and under-

stand, because it is very common that the people who work on them

shall not maintain them. The complexity of the algorithms should be

kept low, not only for performance reasons, but because it makes it

easier for a software engineer to follow their execution flows and de-

bug them. Thus, to reduce the costs involved in the adaptation of a

software system to a specific context, it is very important that the

software system was designed taking into account issues that have a

negative impact on maintenance.

How costly it is to maintain a tool depends on a variety of mea-

surable properties. We have computed these measures on Camel,

Spring Integration, and Mule, and the results do not seem promising

enough. The focus of this article is only on the core implementation

of these proposals, which have similar functionalities, since the

core aim at providing support for the integration patterns docu-

mented by Hohpe and Woolf (2003). The results motivated us to

work on a Software Development Kit (SDK) to which we refer to

as Guaraná SDK.1 The design decisions and the implementation of

the core of Guaraná SDK had always maintainability in mind. The

result is that its design provides better values for the maintainability

measures regarding its core implementation, which suggests that its

core is more maintainable and thus easier to adapt for a particular

context than the core implementation of Camel, Spring Integration,

or Mule. The core of our proposal also aims at providing support for

the integration patterns. The core of Guaraná SDK is composed of two

layers, namely: the framework and the toolkit. The former provides

a number of classes and interfaces that provide the foundation to

implement tasks, adapters, and workflows, as well as a Runtime

System to which we deploy and run the integration solutions; the

latter extends the framework to provide an implementation of tasks

and adapters that is intended to be general purpose.

A six-page abstract regarding our results was presented in Frantz

and Corchuelo (2012); in this article, we extend our preliminary

paper as follows: we analyse 16 additional maintainability mea-

sures, we analyse an additional wide-spread open-source tool, Mule,

we provide a statistical analysis based on Kolmorogov–Smirnov’s

test, Shapiro–Wilk’s test, Iman–Davenport’s test, and Bergmann–

Hommel’s test to confirm our intuitive conclusion from the results

obtained with the maintainability measures, we provide a compre-

hensive description of each layer of Guaraná SDK, and we demon-

strate our proposal by means of an industrial experience that has

been developed in co-operation with a spin-off company. We have

also developed a domain-specific language that is intended to fa-

cilitate designing integration solutions at a high level of abstraction

(Frantz et al., 2011).

The rest of the article is organised as follows: Section 2 presents

the framework layer of Guaraná SDK; Section 3 presents the toolkit

layer; Section 4 presents the experimental study we conducted;

Section 5 presents an industrial experience on which we have

worked; finally, Section 6 reports on our main conclusions.

2. The framework layer

In this section, we describe the framework layer. Fig. 1 provides

an overview of this layer by showing the six packages of which it is

composed. In the following subsections we describe each package.

2.1. Messages

Messages are used to wrap the data that is manipulated in an in-

tegration solution. They are composed of a header, a body and one or

more attachments, cf. Fig. 2.

1 Guaraná technology is available at http://www.guaranasolutions.com.

http://www.guaranasolutions.com


Download English Version:

https://daneshyari.com/en/article/6885533

Download Persian Version:

https://daneshyari.com/article/6885533

Daneshyari.com

https://daneshyari.com/en/article/6885533
https://daneshyari.com/article/6885533
https://daneshyari.com

