
The Journal of Systems and Software 111 (2016) 157–184

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A systematic mapping study on the combination of software architecture

and agile development

Chen Yang a,b, Peng Liang a,∗, Paris Avgeriou b

a State Key Lab of Software Engineering, School of Computer, Wuhan University, 430072 Wuhan, China
b Department of Mathematics and Computing Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

a r t i c l e i n f o

Article history:

Received 18 February 2015

Revised 16 September 2015

Accepted 20 September 2015

Keywords:

Software architecture

Agile development

Architecting approach

a b s t r a c t

Context: Combining software architecture and agile development has received significant attention in recent

years. However, there exists no comprehensive overview of the state of research on the architecture-agility

combination.

Objective: This work aims to analyze the combination of architecture and agile methods for the purpose of

exploration and analysis with respect to architecting activities and approaches, agile methods and practices,

costs, benefits, challenges, factors, tools, and lessons learned concerning the combination.

Method: A systematic mapping study (SMS) was conducted, covering the literature on the architecture-agility

combination published between February 2001 and January 2014.

Results: Fifty-four studies were finally included in this SMS. Some of the highlights: (1) a significant difference

exists in the proportion of various architecting activities, agile methods, and agile practices employed in the

combination. (2) none of the architecting approaches has been widely used in the combination. (3) there

is a lack of description and analysis regarding the costs and failure stories of the combination. (4) twenty

challenges, twenty-nine factors, and twenty-five lessons learned were identified.

Conclusions: The results of this SMS help the software engineering community to reflect on the past thirteen

years of research and practice on the architecture-agility combination with a number of implications.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software Architecture (SA)1 represents “the fundamental concepts

or properties of a system in its environment embodied in its elements, re-

lationships, and in the principles of its design and evolution” (ISO, 2011).

SA acts as a high-level design and as a means of performing com-

plicated trade-offs (e.g., quality requirements) between stakeholders

of software-intensive systems (Bass et al., 2012). Critics of traditional

architecting processes argue that they tend to employ a Big Design

Up-Front (BDUF) approach leading to excessive documentation and

implementation of possibly unneeded features, which introduce ad-

ditional development effort (Abrahamsson et al., 2010). As an alterna-

tive to BDUF, agile development is proposed, which mainly focuses on

adapting to change and delivering products of high quality through

simple work-processes (Dingsøyr et al., 2010).

Freudenberg and Sharp listed the top 10 burning research ques-

tions in the agile development community collected from about 300

∗ Corresponding author. Tel.: +86 27 68776137; fax: +86 27 68776027.

E-mail address: liangp@whu.edu.cn (P. Liang).
1 For readability and clarity, we list all the abbreviations used in this paper in

Appendix B for reference.

practitioners at the XP 2010 conference, and the question “Architec-

ture and agile - how much design is enough for different classes of prob-

lem?” is ranked in the second position (Freudenberg and Sharp, 2010).

Many approaches, techniques, processes, and tools have been pro-

posed and developed to support either the use of SA or the use of

agile methods in software development. However, ways to combine

them is a challenging issue, which has been heavily debated over the

past years (Abrahamsson et al., 2010). To understand how SA and ag-

ile development can be used together, we conducted a systematic

mapping study (SMS) to collect primary studies on using software

architecture in agile development as well as using agile methods

in architecture-centric development. This study aims at identify-

ing available evidence on various aspects of this topic (for details see

Section 3.1), and spotting gaps in the application of architecture in

agile development and the other way round, i.e., the application of

agile methods and practices used within architecture-centric devel-

opment.

An SMS aims at mapping the evidence at a high level for a spe-

cific topic, and is particularly suitable when the studied topic is very

broad (Kitchenham and Charters, 2007). Systematic literature review

(SLR) is another form of secondary study, which provides “a means of

identifying, evaluating, and interpreting all available research relevant to

a particular research question” (Kitchenham and Charters, 2007). We

http://dx.doi.org/10.1016/j.jss.2015.09.028

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.09.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.09.028&domain=pdf
mailto:liangp@whu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.09.028


158 C. Yang et al. / The Journal of Systems and Software 111 (2016) 157–184

decided to conduct an SMS because the studied topics (software ar-

chitecture and agile development) cover very broad areas. However,

we did not just simply perform a mapping (classifying primary stud-

ies into categories), but also synthesized data from studies (by using

grounded theory (Strauss and Corbin, 1998)).

The rest of this paper is structured as follows. Section 2 provides

the context of this SMS, i.e., architecting activities and agile prac-

tices. Section 3 details the mapping study process with the research

questions. Section 4 presents the results of the research questions.

Section 5 further discusses the study results with their implications

for researchers and practitioners. Section 6 presents the threats to va-

lidity. Section 7 concludes this work.

2. Context

The contextual elements of this SMS include architecture-centric

development and agile development. We discuss the topic of

architecture-centric development through architecting activities and

agile development through agile practices. We summarize eleven ar-

chitecting activities in Section 2.1, which are collected from existing

literature, and briefly review the practices of agile development in

Section 2.2.

2.1. Architecting activities

The architecting process is comprised of a number of specific ar-

chitecting activities (covering the entire architectural lifecycle) and a

number of general architecting activities (supporting the specific ac-

tivities). The specific activities are listed and described below:

• Architectural Analysis (AA) is aimed at defining the problems an

architecture must solve. The outcome of this activity is a set of

architecturally significant requirements (ASRs) (Hofmeister et al.,

2007).
• Architectural Synthesis (AS) proposes candidate architecture so-

lutions to address the ASRs collected in AA, thus this activity

moves from the problem to the solution space (Hofmeister et al.,

2007).
• Architectural Evaluation (AE) ensures that the architectural de-

sign decisions made are the right ones, and the candidate archi-

tectural solutions proposed in AS are measured against the ASRs

collected in AA (Hofmeister et al., 2007).
• Architectural Implementation (AI) realizes the architecture by

creating a detailed design (Tang et al., 2010).
• Architectural Maintenance and Evolution (AME): Architectural

maintenance is to change an architecture for the purpose of fix-

ing faults (ISO, 2006, ISO, 2011) and architectural evolution is to

respond to new requirements at architectural level (Postma et al.,

2004). In this SMS, we simply considered architectural mainte-

nance and architectural evolution as one activity, in which an ar-

chitecture is changed either to fix faults or to implement new re-

quirements.

An architecting process is composed of the five specific activities

mentioned above (Hofmeister et al., 2007; Tang et al., 2010). There

are also general architecting activities (e.g., Architectural Description)

identified in (Li et al., 2013) that are meant to support the specific

activities. For example, Architectural Description (ADp) can be used

to specify and document the candidate architecture solutions during

Architectural Synthesis (AS). The general activities are described as

follows:

• Architectural Recovery (AR) is used to extract the current

architecture of a system from the system’s implementation

(Medvidovic and Jakobac, 2006).
• Architectural Description (ADp) is used to describe the architec-

ture with a set of architectural elements (e.g., architecture views).

This activity can help stakeholders (e.g., architects) to understand

the system, and improve the communication and cooperation

among stakeholders (ISO, 2011).
• Architectural Understanding (AU) is used to comprehend the ar-

chitectural elements (e.g., architectural decisions) and their rela-

tionships in an architecture design (Li et al., 2013).
• Architectural Impact Analysis (AIA) is used to identify the ar-

chitectural elements, which are affected by a change scenario

(Bengtsson et al., 2004). The analysis results include the compo-

nents in architecture that are affected directly, as well as the indi-

rect effects of changes to the architecture (Bengtsson et al., 2004).
• Architectural Reuse (ARu) aims at reusing existing architectural

design elements, such as architecture frameworks, decisions, and

patterns in the architecture of a new system (IEEE, 2010).
• Architectural Refactoring (ARf) aims at improving the architec-

tural structure of a system without changing its external behavior

(Babar et al., 2013; Fowler et al., 1999).

2.2. Agile practices

Agile development aims at stripping away, as much as possi-

ble, the effort-intensive activities in software development (Erickson

et al., 2005), and focuses on quick response to various changes of a

project (Erickson et al., 2005). Agile practices are in general practices

used to support agile development. An example of such an agile prac-

tice is iterative and incremental development, which focuses on small

releases and a planning strategy based on a release plan and an itera-

tion plan (Augustine, 2005). Agile practices in principle adhere to the

values proposed in the agile manifesto (16).

To the best of our knowledge, there is no work that systematically

summarizes, analyzes, and classifies all existing agile practices. In lit-

erature we found more than a hundred such practices. We collected

the top 20 of these agile practices (listed in Table 1) according to the

number of articles that discuss them (as shown in the “Sources” col-

umn).

This list of agile practices as well as the related literature pre-

sented above is not comprehensive; there are potentially many other

papers that discuss similar or other agile practices. Furthermore, the

aforementioned agile practices may be partially overlapping as listed

in the parentheses of Table 1. For example, “Direct Interaction with

Customer” in (Begel and Nagappan, 2007) is the same as “On-Site

Customer” in (Silva et al., 2014). Considering this, we include “ag-

ile practice” as a data item to be extracted in selected studies (see

Section 3.2.3) as shown in Table 5. Note that we only focus on the

agile practices related to software architecture in this SMS.

3. Mapping study process

3.1. Research questions

The goal of this SMS, formulated using Goal-Question-Metric ap-

proach (Basili et al., 1994), is to analyze the combination of software

architecture and agile methods for the purpose of exploration and

analysis with respect to architecting activities and approaches, agile

methods and practices, costs, benefits, challenges, factors, tools, and

lessons learned from the point of view of researchers and practi-

tioners in the context of software development.

We decomposed the goal into nine research questions (RQs)

shown in Table 2. The answers of these RQs can be readily linked

to the objective of this mapping study: an understanding of how ar-

chitecting can be used in agile development (RQ1, RQ2), which agile

methods and practices can be used with architecture (RQ3, RQ4), the

costs, benefits, challenges, and the available tools of the architecture-

agility combination (RQ5, RQ6, RQ8), the factors which may have an

impact on the combination (RQ7), and the lessons learned from the

combination (RQ9).



Download English Version:

https://daneshyari.com/en/article/6885539

Download Persian Version:

https://daneshyari.com/article/6885539

Daneshyari.com

https://daneshyari.com/en/article/6885539
https://daneshyari.com/article/6885539
https://daneshyari.com

