
ARTICLE IN PRESS
JID: JSS [m5G;September 14, 2015;22:12]

The Journal of Systems and Software 000 (2015) 1–25

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A three-dimensional taxonomy for bidirectional model synchronization

Zinovy Diskin a,b, Hamid Gholizadeh b,∗, Arif Wider c, Krzysztof Czarnecki a

a University of Waterloo, Waterloo, ON, Canada
b McMaster University, Hamilton, ON, Canada
c Humboldt-Universität zu Berlin, Berlin, Germany

a r t i c l e i n f o

Article history:

Received 7 May 2014

Revised 29 May 2015

Accepted 1 June 2015

Available online xxx

Keywords:

Model synchronization

Taxonomy

Formal semantics

a b s t r a c t

Early model-driven engineering (MDE) assumed simple pipeline-like scenarios specified by the Model-Driven

Architecture approach: platform-independent models that describe a software system at a high-level of ab-

straction are transformed stepwise to platform-dependent models from which executable source code is

generated. Modern applications require a shift toward networks of models related in various ways, whose

synchronization often needs to be incremental and bidirectional. This new situation demands new features

from transformation tools, and a solid semantic foundation to understand and classify these features. We

address the problem by presenting a taxonomy of model synchronization types, organized into a 3D-space.

Each point in the space refers to a specific synchronization semantics with an underlying algebraic model and

the respective requirements for the change propagation operations and their properties. The taxonomy aims

to help with identifying and communicating a proper specification for the synchronization problem at hand

and for the available solutions offered by tools.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Early model-driven engineering (MDE) assumed simple pipeline-

like scenarios as specified by the Model-Driven Architecture (MDA)

approach (Miller and Mukerji, 2003): platform-independent mod-

els that describe a software system at a high-level of abstraction are

transformed stepwise to platform-dependent models from which ex-

ecutable source code is generated. The generated code was meant

to be a secondary artifact similar to assembler or byte code, which

(being the result of compilation) can be discarded anytime, whereas

models were the primary artifacts to be maintained. Fig. 1 illustrates

this pipeline-like flow of transformations: models are always trans-

formed unidirectionally from a higher to a lower level of abstraction.

However, it soon became clear that full code-generation, where

modeling languages were meant to succeed programming languages,

was difficult to achieve in practice because manual modifications of

the generated code (or lower level models) were often unavoidable,

or simply more practical. Hence, to keep models’ role as first-class cit-

izens, code modifications need to be propagated back to higher level

models to keep them in sync. We thus have vertically bi-directional

transformation or round-tripping.

∗ Corresponding author. Tel.: +1 905-525-9140x23358.

E-mail addresses: zdiskin@gsd.uwaterloo.ca (Z. Diskin), hamid.gholizadeh@

gmail.com, mohammh@mcmaster.ca (H. Gholizadeh), wider@informatik.hu-berlin.de

(A. Wider), kczarnec@gsd.uwaterloo.ca (K. Czarnecki).

Fig. 1. MDE-pipe in MDA.

Furthermore, in early MDA scenarios models at the same level of

abstraction were often considered to have no overlaps. For example,

a platform-independent model was meant to have no overlap with

the model of a specific platform (both at a high abstraction level),

which were together used for generating a platform-specific model

at a lower abstraction level. In practice however, often multiple high-

level models describe different aspects of a system and do overlap. In

such cases consistency between those models must be ensured. Thus,

bidirectional synchronization is not only needed between abstraction

layers (“along streams”, e.g., between a UML model and Java code it

http://dx.doi.org/10.1016/j.jss.2015.06.003

0164-1212/© 2015 Elsevier Inc. All rights reserved.

Please cite this article as: Z. Diskin et al., A three-dimensional taxonomy for bidirectional model synchronization, The Journal of Systems and

Software (2015), http://dx.doi.org/10.1016/j.jss.2015.06.003

http://dx.doi.org/10.1016/j.jss.2015.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:zdiskin@gsd.uwaterloo.ca
mailto:hamid.gholizadeh@gmail.com
mailto:mohammh@mcmaster.ca
mailto:wider@informatik.hu-berlin.de
mailto:kczarnec@gsd.uwaterloo.ca
http://dx.doi.org/10.1016/j.jss.2015.06.003
http://dx.doi.org/10.1016/j.jss.2015.06.003


2 Z. Diskin et al. / The Journal of Systems and Software 000 (2015) 1–25

ARTICLE IN PRESS
JID: JSS [m5G;September 14, 2015;22:12]

Fig. 2. Modern MDE pipe.

generates), but also within abstraction layers (“across streams”, e.g.,

between a class diagram and a sequence diagram specifying an inter-

action of objects typed over the class diagram). These features trans-

form the MDA pipe into a network of interacting models as shown in

Fig. 2. Metaphorically, we can say that round-tripping and overlap-

ping change the flow from “laminar” to “turbulent”, as illustrated in

Fig. 3.

“Turbulency” of modern model transformation brings several the-

oretical and practical challenges. The necessity to sync models within

abstraction layers makes model alignment (matching) an essential

component of synchronization. It is important to separate concerns

and distinguish between (1) alignment that needs heuristics and,

perhaps, an input from the user, and (2) update propagation, which

can be treated as an algebraic operation amenable to full automa-

tion after an update policy is established (see Diskin et al., 2011a).

Multi-directionality of model synchronization means that changes

between models are propagated in all directions in a mutually

consistent way. Its implementation via separate but mutually com-

patible procedures would require a proof of compatibility, and be

very difficult to maintain as each direction of change propagation is

itself a complex model transformation. For the case of two models,

a common solution nowadays is to specify a consistency relation be-

tween the models and let the update propagation procedures be in-

ferred from this specification, so that they are always consistent by

construction. Such an approach is commonly referred to as bidirec-

tional transformation or bx. We are not aware of any implementation

of the multi-directional case.

Semantics of such complex synchronization procedures as above

is not well understood, whereas clear semantics is crucial for syn-

Fig. 3. Change in MDE flow.

chronization tools because otherwise users have no trust in auto-

matic synchronization. Severe problems of adopting the industrial

standard QVT-R (which treats the binary synchronization case) is a

typical example: despite early availability of QVT-R tools on the mar-

ket, its adoption could hardly be considered successful. As argued by

Stevens (2010), the most probable reason for the failure is a set of ma-

jor semantic issues revealed and discussed in Stevens (2010). More-

over, building semantic foundations for QVT-R turned out a challeng-

ing issue. A formal semantics for a relatively simple check-only mode

required rather intricate mathematical constructs based on symbolic

graphs (Guerra and de Lara, 2012); formalization of the enforce mode

is still an open issue. Thus, understanding of even a binary general

synchronization is challenging, not to mention the multi-ary case

(which fits in our metaphor of turbulency: the latter is known to be a

very complex mechanical phenomenon, whose specification requires

special mathematical methods). The lack of a sound underlying the-

ory leads to a shaky conceptual framework, ambiguous terminology

and flawed communication between tool users and tool builders, and

ultimately to deficient tools. Indeed, imperfect MDE tooling (partic-

ularly, for synchronization) is considered by many as a major barrier

for the industrial adoption of MDE (Haan, 2008; Kuhn et al., 2012;

Tomassetti et al., 2012; Whittle et al., 2013); we will discuss this issue

in more detail in Section 2.

A typical first step in approaching a complex problem in science

or engineering is to build a basic ontology of the domain and classify

the “species” inhabiting it. This is what we are going to do in this pa-

per for the domain of bx—the simplest, but practically very important

case of multi-directional model synchronization, when the system to

be kept in sync consists of two models. Several highlights of our goals

in the paper, means to achieve them, and their interpretation, are as

follows.
• We only consider the binary case.
• We classify semantic possibilities for model synchronization

rather than possible implementations and tools. In the con-

text of tooling, we classify design choices—the what rather than

the how.
• The classification is based on a mathematical model of bx pro-

vided by delta lenses (Diskin et al., 2011a; 2011b): a family of al-

gebraic structures that specify bx in an abstract declarative way

(a brief description will be given in Section 2.1, and a full account

can be found in Appendix A). A central ingredient of delta lenses

is the notion of inter-model correspondence, which establishes

consistency or inconsistency of the models. If one of the initially

consistent models is updated and consistency is broken, the other

model is to be accordingly updated too to restore consistency; we

say that the update (or the change) is propagated from one model

to the other.
• No specific assumptions are made about what models, their up-

dates and correspondences are, which provides a significant flexi-

bility of the framework. One typical application is synchronization

of the source and the target of a model transformation translat-

ing models from a source metamodel to a target metamodel, with

correspondences given by traceability mappings. Another appli-

cation is synchronization of two views of the same system, with

correspondences given by model matching. In both cases, corre-

spondences between models are implicitly typed by the respec-

tive mappings between metamodels; moreover, the latter can be

seen as view definitions that actually determine transformations

(Diskin, 2009; Diskin et al., 2010). Thus, metamodels and their

mappings are important but implicit components of the frame-

work. In contrast, for scenarios of model-metamodel coevolution

(Ruscio et al., 2012; Mantz, 2014) the metamodel participation is

quite explicit and correspondences are given by the typing map-

ping between a model and its metamodel rather than between

two metamodels. Although the case of model coevolution can be

formally subsumed by the framework, the underlying intuition is

Please cite this article as: Z. Diskin et al., A three-dimensional taxonomy for bidirectional model synchronization, The Journal of Systems and

Software (2015), http://dx.doi.org/10.1016/j.jss.2015.06.003

http://dx.doi.org/10.1016/j.jss.2015.06.003


Download English Version:

https://daneshyari.com/en/article/6885554

Download Persian Version:

https://daneshyari.com/article/6885554

Daneshyari.com

https://daneshyari.com/en/article/6885554
https://daneshyari.com/article/6885554
https://daneshyari.com

